Coupling dynamics of locally active memristor based neurons.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED Chaos Pub Date : 2024-08-01 DOI:10.1063/5.0219075
Yujiao Dong, Rongrong Guo, Yan Liang, Jinqiao Yang, Guangyi Wang
{"title":"Coupling dynamics of locally active memristor based neurons.","authors":"Yujiao Dong, Rongrong Guo, Yan Liang, Jinqiao Yang, Guangyi Wang","doi":"10.1063/5.0219075","DOIUrl":null,"url":null,"abstract":"<p><p>Brain-like dynamics require third-order or higher-order complexity. In order to investigate the coupling neuromorphic behaviors of identical third-order memristive neurons, this paper begins with the aim of exploring two identical neuron based dynamics under distinct operating regimes and coupling strengths. Without coupling, the single neuron can exhibit resting states, periodic spikes, or chaos depending on the bias condition. The uncoupled resting neurons can be activated by resistive coupling, inducing inhomogeneous resting states (static Smale paradox) and inhomogeneous spikes (dynamic Smale paradox) due to the edge of chaos regime. Considering the single neuron at the periodic spikes or chaotic states, the coupled neurons can mimic shocking oscillation death, non-periodic asynchronization, and periodic synchronization via the Hopf bifurcation theory. From the above analyses, an artificial ring neural network is constructed using 100 memristive neurons and resistive synapses to further study the coupled mechanism, generating exotic spatiotemporal patterns such as chimera death, amplitude chimera, solitary states, and asynchronization because of symmetry breaking. This sheds new light on exploring exotic spatiotemporal patterns of networks based on memristive neurons from the perspective of the nonlinear circuit theory.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0219075","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Brain-like dynamics require third-order or higher-order complexity. In order to investigate the coupling neuromorphic behaviors of identical third-order memristive neurons, this paper begins with the aim of exploring two identical neuron based dynamics under distinct operating regimes and coupling strengths. Without coupling, the single neuron can exhibit resting states, periodic spikes, or chaos depending on the bias condition. The uncoupled resting neurons can be activated by resistive coupling, inducing inhomogeneous resting states (static Smale paradox) and inhomogeneous spikes (dynamic Smale paradox) due to the edge of chaos regime. Considering the single neuron at the periodic spikes or chaotic states, the coupled neurons can mimic shocking oscillation death, non-periodic asynchronization, and periodic synchronization via the Hopf bifurcation theory. From the above analyses, an artificial ring neural network is constructed using 100 memristive neurons and resistive synapses to further study the coupled mechanism, generating exotic spatiotemporal patterns such as chimera death, amplitude chimera, solitary states, and asynchronization because of symmetry breaking. This sheds new light on exploring exotic spatiotemporal patterns of networks based on memristive neurons from the perspective of the nonlinear circuit theory.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于局部主动忆阻器的神经元耦合动力学。
类脑动力学需要三阶或更高阶的复杂性。为了研究相同三阶记忆神经元的耦合神经形态行为,本文首先探讨了两个相同神经元在不同工作状态和耦合强度下的动力学。在没有耦合的情况下,单个神经元会表现出静息状态、周期性尖峰或混沌,具体取决于偏置条件。无耦合的静息神经元可被电阻耦合激活,从而诱发不均匀静息态(静态斯马尔悖论)和不均匀尖峰(动态斯马尔悖论)。考虑到单个神经元处于周期性尖峰或混沌状态,耦合神经元可通过霍普夫分岔理论模拟冲击振荡死亡、非周期性异步和周期性同步。根据上述分析,我们利用 100 个记忆神经元和电阻突触构建了一个人工环状神经网络,进一步研究了耦合机制,产生了奇异的时空模式,如嵌合死亡、振幅嵌合、孤态和因对称性破缺而产生的异步。这为从非线性电路理论的角度探索基于记忆神经元网络的奇异时空模式带来了新的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
期刊最新文献
Bifurcation analysis of a two-neuron central pattern generator model for both oscillatory and convergent neuronal activities. Dynamics and control of two-dimensional discrete-time biological model incorporating weak Allee's effect. Evolution of trust in N-player trust games with loss assessment. Experimental studies of spiral wave teleportation in a light sensitive Belousov-Zhabotinsky system. Resilience of weighted networks with dynamical behavior against multi-node removal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1