Hui Niu, Wenduo Wang, Haiming Chen* and Xiong Fu*,
{"title":"Adsorption Kinetics and Interfacial Dilatational Rheology of Oil–Water Interfacial Films Loaded with Homogalacturonan and Rhamnogalacturonan-I","authors":"Hui Niu, Wenduo Wang, Haiming Chen* and Xiong Fu*, ","doi":"10.1021/acsfoodscitech.4c0035710.1021/acsfoodscitech.4c00357","DOIUrl":null,"url":null,"abstract":"<p >Our recent study on the isolation of rhamnogalacturonan-I (RG-I) pectin enriched with acetyl groups, ferulic acid, neutral sugar side chains, and proteins through enzymatic hydrolysis of the homogalacturonan (HG) region of sugar beet pectin showed that RG-I molecules can form more stable emulsions than HG molecules. In this experiment, the interfacial adsorption kinetics of HG and RG-I molecules at the oil–water interface and the resistance effects of these interfacial films on extrinsic perturbations were further investigated. All of these experimental results indicated that the RG-I-stabilized interfacial film presented better elasticity (43.36 mN/m) and stronger resistance to extrinsic perturbations than HG (12.41 mN/m). In addition, both HG- and RG-I-loaded interfacial films exhibited linear viscoelastic responses when a small interfacial deformation and low-frequency perturbation were applied. When the interfacial deformation increased further, both HG- and RG-loaded interfacial films underwent strain softening during the extension stage. However, in the compression stage, the HG-loaded interfacial film underwent strain hardening, whereas the RG-loaded interfacial film exhibited strain softening.</p>","PeriodicalId":72048,"journal":{"name":"ACS food science & technology","volume":"4 8","pages":"1967–1977 1967–1977"},"PeriodicalIF":2.6000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS food science & technology","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsfoodscitech.4c00357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Our recent study on the isolation of rhamnogalacturonan-I (RG-I) pectin enriched with acetyl groups, ferulic acid, neutral sugar side chains, and proteins through enzymatic hydrolysis of the homogalacturonan (HG) region of sugar beet pectin showed that RG-I molecules can form more stable emulsions than HG molecules. In this experiment, the interfacial adsorption kinetics of HG and RG-I molecules at the oil–water interface and the resistance effects of these interfacial films on extrinsic perturbations were further investigated. All of these experimental results indicated that the RG-I-stabilized interfacial film presented better elasticity (43.36 mN/m) and stronger resistance to extrinsic perturbations than HG (12.41 mN/m). In addition, both HG- and RG-I-loaded interfacial films exhibited linear viscoelastic responses when a small interfacial deformation and low-frequency perturbation were applied. When the interfacial deformation increased further, both HG- and RG-loaded interfacial films underwent strain softening during the extension stage. However, in the compression stage, the HG-loaded interfacial film underwent strain hardening, whereas the RG-loaded interfacial film exhibited strain softening.