Safoura Babanejad*, Hesham Ahmed, Charlotte Andersson and Elsayed Mousa,
{"title":"Pyrometallurgical Approach to Extracting Valuable Metals from a Combination of Diverse Li-Ion Batteries’ Black Mass","authors":"Safoura Babanejad*, Hesham Ahmed, Charlotte Andersson and Elsayed Mousa, ","doi":"10.1021/acssusresmgt.4c0011710.1021/acssusresmgt.4c00117","DOIUrl":null,"url":null,"abstract":"<p >Li-ion batteries (LIBs) are widely used nowadays. Because of their limited lifetimes and resource constraints in manufacturing them, it is essential to develop effective recycling routes to recover their valuable elements. This study focuses on the pyrometallurgical recycling of black mass (BM) from a mixture of different LIBs. In this study, the high-temperature behavior of two types of mixed BM is initially examined. Subsequently, the effect of mechanical activation on the BM reduction kinetics is investigated. Finally, hematite is added to the BM to first be reduced by the excess graphite in the BM and second to form an Fe-based alloy containing Co and Ni. This study demonstrates that mechanical activation does not necessarily affect the kinetics of BM high-temperature behavior. Furthermore, it demonstrates that alloy-making by the addition of hematite is a successful method to simultaneously utilize the graphite in the BM and recover Co and Ni, regardless of the LIB type.</p><p >When the sustainability in pyrometallurgical recycling of Li-ion batteries was enhanced, precious metals were recovered through an in situ alloy-making process, with an attempt to decrease CO<sub>2</sub> emissions.</p>","PeriodicalId":100015,"journal":{"name":"ACS Sustainable Resource Management","volume":"1 8","pages":"1759–1767 1759–1767"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acssusresmgt.4c00117","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Resource Management","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssusresmgt.4c00117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Li-ion batteries (LIBs) are widely used nowadays. Because of their limited lifetimes and resource constraints in manufacturing them, it is essential to develop effective recycling routes to recover their valuable elements. This study focuses on the pyrometallurgical recycling of black mass (BM) from a mixture of different LIBs. In this study, the high-temperature behavior of two types of mixed BM is initially examined. Subsequently, the effect of mechanical activation on the BM reduction kinetics is investigated. Finally, hematite is added to the BM to first be reduced by the excess graphite in the BM and second to form an Fe-based alloy containing Co and Ni. This study demonstrates that mechanical activation does not necessarily affect the kinetics of BM high-temperature behavior. Furthermore, it demonstrates that alloy-making by the addition of hematite is a successful method to simultaneously utilize the graphite in the BM and recover Co and Ni, regardless of the LIB type.
When the sustainability in pyrometallurgical recycling of Li-ion batteries was enhanced, precious metals were recovered through an in situ alloy-making process, with an attempt to decrease CO2 emissions.