{"title":"Lipopolysaccharide Derived from <i>Pantoea agglomerans</i> Directly Promotes the Migration of Human Keratinocytes.","authors":"Hiroyuki Inagawa, Takashi Nishizawa, Chie Kohchi, Gen-Ichiro Soma","doi":"10.21873/invivo.13680","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aim: </strong>Because the skin is exposed to the external environment, it is important that wound healing processes proceed and terminate rapidly to minimize the risk of infection. A previous case report described the promotion of wound healing by transdermal administration of lipopolysaccharide derived from Pantoea agglomerans (LPSp). However, whether the wound healing-promoting effect of LPSp was due to direct activity on skin cells or indirect effects involving macrophages remained unclear. Therefore, this study investigated the wound healing-promoting effect of LPSp, particularly the promotion of keratinocyte migration.</p><p><strong>Materials and methods: </strong>The migration of HaCaT human keratinocytes over time with and without LPSp was assayed using a cell migration assay kit. Migration was also analyzed using HaCaT cells treated with LPSp and an antibody against Toll-like receptor (TLR) 4, a receptor for LPS.</p><p><strong>Results: </strong>Addition of LPSp significantly enhanced cell migration compared to no LPSp addition. Migration was inhibited by the addition of anti-TLR4 antibody.</p><p><strong>Conclusion: </strong>LPSp acts directly on epidermal cells to promote migration and may be one mechanism by which LPSp promotes wound healing.</p>","PeriodicalId":13364,"journal":{"name":"In vivo","volume":"38 5","pages":"2172-2178"},"PeriodicalIF":1.8000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11363747/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In vivo","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21873/invivo.13680","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background/aim: Because the skin is exposed to the external environment, it is important that wound healing processes proceed and terminate rapidly to minimize the risk of infection. A previous case report described the promotion of wound healing by transdermal administration of lipopolysaccharide derived from Pantoea agglomerans (LPSp). However, whether the wound healing-promoting effect of LPSp was due to direct activity on skin cells or indirect effects involving macrophages remained unclear. Therefore, this study investigated the wound healing-promoting effect of LPSp, particularly the promotion of keratinocyte migration.
Materials and methods: The migration of HaCaT human keratinocytes over time with and without LPSp was assayed using a cell migration assay kit. Migration was also analyzed using HaCaT cells treated with LPSp and an antibody against Toll-like receptor (TLR) 4, a receptor for LPS.
Results: Addition of LPSp significantly enhanced cell migration compared to no LPSp addition. Migration was inhibited by the addition of anti-TLR4 antibody.
Conclusion: LPSp acts directly on epidermal cells to promote migration and may be one mechanism by which LPSp promotes wound healing.
期刊介绍:
IN VIVO is an international peer-reviewed journal designed to bring together original high quality works and reviews on experimental and clinical biomedical research within the frames of physiology, pathology and disease management.
The topics of IN VIVO include: 1. Experimental development and application of new diagnostic and therapeutic procedures; 2. Pharmacological and toxicological evaluation of new drugs, drug combinations and drug delivery systems; 3. Clinical trials; 4. Development and characterization of models of biomedical research; 5. Cancer diagnosis and treatment; 6. Immunotherapy and vaccines; 7. Radiotherapy, Imaging; 8. Tissue engineering, Regenerative medicine; 9. Carcinogenesis.