Wenjing Dong , Xvdong Ran , Guanglun He , Wei Hu , Yongjun Chen , Yuanfa He , Shimei Lin
{"title":"The effect of dietary full-fat Hermetia illucens larvae meal on growth performance and intestine physiology in largemouth bass (Micropterus salmoides)","authors":"Wenjing Dong , Xvdong Ran , Guanglun He , Wei Hu , Yongjun Chen , Yuanfa He , Shimei Lin","doi":"10.1016/j.anifeedsci.2024.116089","DOIUrl":null,"url":null,"abstract":"<div><p>The present study aimed to investigate the effects of different inclusion levels of full-fat <em>Hermetia illucens</em> larvae (HI) meal as a protein source on the growth performance, intestinal morphology, health, and microbiota of largemouth bass. Five isonitrogenous and isolipidic diets were formulated by adding HI to replace 0 % (HI0, control), 10 % (HI10), 20 % (HI20), 30 % (HI30) and 40 % (HI40) of fish meal (FM) in diets. Each diet was randomly assigned to triplicate groups of 30 fish per aquarium. Fish were fed two times daily to apparent satiation for 80 days. The results indicated that weight gain rate, specific growth rate and protein efficiency ratio were not appreciably reduced until more than 30 % of the FM protein was replaced with HI. Fish fed HI40 diet had the lowest fatty acid (C18:3, C20:5, C22:6) contents (<em>P</em> < 0.05). Moreover, the villi height was decreased, villi width and goblet cell number in hindgut was increased in the HI40 group compared with the other groups, respectively. Meanwhile, serum diamine oxidase activity, D-lactate and endotoxin contents increased markedly as the proportion of HI increased (<em>P</em> < 0.05). Notably, the increased dietary HI levels down-regulated the mRNA expression levels of <em>cldnd1b</em> and <em>ocel1</em> in intestine. Higher malondialdehyde content and down-regulated expression of <em>sod</em> and <em>gpx1a</em> in the intestine were also observed in the HI40 group. Accordingly, the increased dietary HI levels upregulated the expression of intestinal pro-inflammatory cytokines (<em>tumor necrosis factor-α and interleukin-1β</em>) and down-regulated anti-inflammatory cytokines (<em>transcriptional growth factor-β1 and interleukin-10</em>) (<em>P</em> < 0.05). In addition, the abundance of both intestinal <em>Lactobacillus</em> and <em>Streptococcus</em> increased significantly, while the abundance of <em>Cetobacterium</em> decreased in the HI20 group (<em>P</em> < 0.05). Broken-line model analysis based on weight gain rate against dietary HI replacement level indicated that the optimum replacement level was 26.79 %. However, including too high proportion of HI could induce intestinal dysbiosis, impair the intestine physical barrier, and finally reduced growth of <em>Micropterus salmoides</em>.</p></div>","PeriodicalId":7861,"journal":{"name":"Animal Feed Science and Technology","volume":"317 ","pages":"Article 116089"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Feed Science and Technology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377840124002177","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The present study aimed to investigate the effects of different inclusion levels of full-fat Hermetia illucens larvae (HI) meal as a protein source on the growth performance, intestinal morphology, health, and microbiota of largemouth bass. Five isonitrogenous and isolipidic diets were formulated by adding HI to replace 0 % (HI0, control), 10 % (HI10), 20 % (HI20), 30 % (HI30) and 40 % (HI40) of fish meal (FM) in diets. Each diet was randomly assigned to triplicate groups of 30 fish per aquarium. Fish were fed two times daily to apparent satiation for 80 days. The results indicated that weight gain rate, specific growth rate and protein efficiency ratio were not appreciably reduced until more than 30 % of the FM protein was replaced with HI. Fish fed HI40 diet had the lowest fatty acid (C18:3, C20:5, C22:6) contents (P < 0.05). Moreover, the villi height was decreased, villi width and goblet cell number in hindgut was increased in the HI40 group compared with the other groups, respectively. Meanwhile, serum diamine oxidase activity, D-lactate and endotoxin contents increased markedly as the proportion of HI increased (P < 0.05). Notably, the increased dietary HI levels down-regulated the mRNA expression levels of cldnd1b and ocel1 in intestine. Higher malondialdehyde content and down-regulated expression of sod and gpx1a in the intestine were also observed in the HI40 group. Accordingly, the increased dietary HI levels upregulated the expression of intestinal pro-inflammatory cytokines (tumor necrosis factor-α and interleukin-1β) and down-regulated anti-inflammatory cytokines (transcriptional growth factor-β1 and interleukin-10) (P < 0.05). In addition, the abundance of both intestinal Lactobacillus and Streptococcus increased significantly, while the abundance of Cetobacterium decreased in the HI20 group (P < 0.05). Broken-line model analysis based on weight gain rate against dietary HI replacement level indicated that the optimum replacement level was 26.79 %. However, including too high proportion of HI could induce intestinal dysbiosis, impair the intestine physical barrier, and finally reduced growth of Micropterus salmoides.
期刊介绍:
Animal Feed Science and Technology is a unique journal publishing scientific papers of international interest focusing on animal feeds and their feeding.
Papers describing research on feed for ruminants and non-ruminants, including poultry, horses, companion animals and aquatic animals, are welcome.
The journal covers the following areas:
Nutritive value of feeds (e.g., assessment, improvement)
Methods of conserving and processing feeds that affect their nutritional value
Agronomic and climatic factors influencing the nutritive value of feeds
Utilization of feeds and the improvement of such
Metabolic, production, reproduction and health responses, as well as potential environmental impacts, of diet inputs and feed technologies (e.g., feeds, feed additives, feed components, mycotoxins)
Mathematical models relating directly to animal-feed interactions
Analytical and experimental methods for feed evaluation
Environmental impacts of feed technologies in animal production.