Gastroretentive Delivery Approach to Address pH-Dependent Degradation of (+)- and (-)-Phenserine

IF 3.4 4区 医学 Q2 PHARMACOLOGY & PHARMACY AAPS PharmSciTech Pub Date : 2024-08-27 DOI:10.1208/s12249-024-02903-w
Pratishtha Verma, Leyla Rezaei, Ramprakash Govindarajan, Nigel H. Greig, Maureen D. Donovan
{"title":"Gastroretentive Delivery Approach to Address pH-Dependent Degradation of (+)- and (-)-Phenserine","authors":"Pratishtha Verma,&nbsp;Leyla Rezaei,&nbsp;Ramprakash Govindarajan,&nbsp;Nigel H. Greig,&nbsp;Maureen D. Donovan","doi":"10.1208/s12249-024-02903-w","DOIUrl":null,"url":null,"abstract":"<div><p>(-)-Phenserine (“phenserine”) and (+)-phenserine (posiphen; buntanetap) are longer-acting enantiomeric analogs of physostigmine with demonstrated promise in the treatment of Alzheimer’s and Parkinson’s diseases. Both enantiomers have short plasma half-lives, and their pharmacokinetics might be improved through the use of either once or twice-daily administration of an extended-release dosage form. Phenserine was observed to form a colored degradation product in near-neutral and alkaline pH environments, and at pH 7, the half-life of posiphen was determined to be ~ 9 h (40 °C). To limit luminal degradation which would reduce bioavailability, a gastroretentive tablet composed of a polyethylene oxide-xanthan gum matrix was developed. When placed in simulated gastric fluid (pH 1.2), approximately 70% of the phenserine was released over a 12 h period, and no degradants were detected in the release medium. In comparison, a traditional hydrophilic-matrix, extended-release tablet showed measurable amounts of phenserine degradation in a pH 7.2 medium over an 8 h release interval. These results confirm that a gastroretentive tablet can reduce the luminal degradation of phenserine or posiphen by limiting exposure to neutral pH conditions while providing sustained release of the drug over at least 12 h. Additional advantages of the gastroretentive tablet include reduced gastric and intestinal concentrations of the drug resulting from the slower release from the gastroretentive tablet which may also limit the occurrence of the dose-limiting GI side effects previously observed with immediate-release phenserine capsules.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"25 7","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS PharmSciTech","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1208/s12249-024-02903-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

(-)-Phenserine (“phenserine”) and (+)-phenserine (posiphen; buntanetap) are longer-acting enantiomeric analogs of physostigmine with demonstrated promise in the treatment of Alzheimer’s and Parkinson’s diseases. Both enantiomers have short plasma half-lives, and their pharmacokinetics might be improved through the use of either once or twice-daily administration of an extended-release dosage form. Phenserine was observed to form a colored degradation product in near-neutral and alkaline pH environments, and at pH 7, the half-life of posiphen was determined to be ~ 9 h (40 °C). To limit luminal degradation which would reduce bioavailability, a gastroretentive tablet composed of a polyethylene oxide-xanthan gum matrix was developed. When placed in simulated gastric fluid (pH 1.2), approximately 70% of the phenserine was released over a 12 h period, and no degradants were detected in the release medium. In comparison, a traditional hydrophilic-matrix, extended-release tablet showed measurable amounts of phenserine degradation in a pH 7.2 medium over an 8 h release interval. These results confirm that a gastroretentive tablet can reduce the luminal degradation of phenserine or posiphen by limiting exposure to neutral pH conditions while providing sustained release of the drug over at least 12 h. Additional advantages of the gastroretentive tablet include reduced gastric and intestinal concentrations of the drug resulting from the slower release from the gastroretentive tablet which may also limit the occurrence of the dose-limiting GI side effects previously observed with immediate-release phenserine capsules.

Graphical Abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
解决(+)-和(-)-细辛的 pH 依赖性降解问题的护胃给药方法。
(-)-苯海拉明("phenserine")和(+)-苯海拉明(posiphen;buntanetap)是作用时间较长的波司的明对映体类似物,在治疗阿尔茨海默氏症和帕金森氏症方面前景看好。这两种对映体的血浆半衰期都很短,通过每天服用一次或两次缓释剂型,可以改善它们的药代动力学。据观察,在接近中性和碱性的 pH 环境中,phenserine 会形成一种有色降解产物,在 pH 值为 7 时,posiphen 的半衰期约为 9 小时(40 °C)。为了限制会降低生物利用率的管腔降解,我们开发了一种由聚乙烯氧化物-黄原胶基质组成的胃保留片剂。在模拟胃液(pH 值为 1.2)中放置 12 小时后,约 70% 的钩藤碱被释放出来,并且在释放介质中未检测到降解物。相比之下,一种传统的亲水基质缓释片在 pH 值为 7.2 的介质中,在 8 小时的释放间隔内,出现了可测量的芬瑟林降解量。这些结果证实,胃复安片剂可以通过限制暴露在中性pH条件下,减少表皮生长因子或泊西芬的腔内降解,同时提供至少12小时的药物持续释放。胃复安片剂的其他优点还包括,由于胃复安片剂的释放速度较慢,降低了药物在胃和肠道中的浓度,这也可以限制以前在表皮生长因子速释胶囊中观察到的剂量限制性胃肠道副作用的发生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
AAPS PharmSciTech
AAPS PharmSciTech 医学-药学
CiteScore
6.80
自引率
3.00%
发文量
264
审稿时长
2.4 months
期刊介绍: AAPS PharmSciTech is a peer-reviewed, online-only journal committed to serving those pharmaceutical scientists and engineers interested in the research, development, and evaluation of pharmaceutical dosage forms and delivery systems, including drugs derived from biotechnology and the manufacturing science pertaining to the commercialization of such dosage forms. Because of its electronic nature, AAPS PharmSciTech aspires to utilize evolving electronic technology to enable faster and diverse mechanisms of information delivery to its readership. Submission of uninvited expert reviews and research articles are welcomed.
期刊最新文献
The Role of Phase Separation and Local Mobility in the Stabilization of a Lyophilized IgG2 Formulation Predicting the Thermodynamic Solubility and Stability of Co-crystals and Eutectics of Febuxostat by using a Thermodynamic Model involving Flory Huggins Interaction Parameter The Role of Amphiphilic Compounds in Nasal Nanoparticles Correction: Croscarmellose Sodium as Pelletization Aid in Extrusion-Spheronization Chitosan-Based Nanoformulations: Preclinical Investigations, Theranostic Advancements, and Clinical Trial Prospects for Targeting Diverse Pathologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1