Impact of a single-side 100Cr6 clad layer on the tensile and fatigue properties of S550MC steel

IF 3.1 2区 材料科学 Q2 ENGINEERING, MECHANICAL Fatigue & Fracture of Engineering Materials & Structures Pub Date : 2024-08-01 DOI:10.1111/ffe.14383
M. Krochmal, T. Wegener, T. Niendorf
{"title":"Impact of a single-side 100Cr6 clad layer on the tensile and fatigue properties of S550MC steel","authors":"M. Krochmal,&nbsp;T. Wegener,&nbsp;T. Niendorf","doi":"10.1111/ffe.14383","DOIUrl":null,"url":null,"abstract":"<p>The production of newly developed hot-rolled layered metal composites (LMC) leads to the availability of sheet materials with specifically adjustable, graded properties being cost-effective and suitable for large-scale production. As many of the envisaged applications of these LMC, e.g., clutch disc carriers, suffer from cyclic loading during service life, a fundamental knowledge of the fatigue behavior is required in order to ensure safe and reliable application of the components. Therefore, the present study focuses on the fatigue behavior of a hot-rolled two-layer LMC consisting of a S550MC substrate layer and a 100Cr6 clad layer. In order to investigate the influence of the clad layer, two conditions are directly compared, i.e., the two-layer laminate cladded steel and the single-layer substrate condition. Results presented by mechanical testing include hardness measurements and tensile tests as well as strain-controlled low-cycle fatigue and stress-controlled high-cycle fatigue tests. These results are discussed based on evolution of microstructure, residual stress, and defects, respectively, as elaborated by scanning electron microscopy, X-ray diffraction, and fracture surface analysis.</p>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"47 10","pages":"3707-3722"},"PeriodicalIF":3.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ffe.14383","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14383","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The production of newly developed hot-rolled layered metal composites (LMC) leads to the availability of sheet materials with specifically adjustable, graded properties being cost-effective and suitable for large-scale production. As many of the envisaged applications of these LMC, e.g., clutch disc carriers, suffer from cyclic loading during service life, a fundamental knowledge of the fatigue behavior is required in order to ensure safe and reliable application of the components. Therefore, the present study focuses on the fatigue behavior of a hot-rolled two-layer LMC consisting of a S550MC substrate layer and a 100Cr6 clad layer. In order to investigate the influence of the clad layer, two conditions are directly compared, i.e., the two-layer laminate cladded steel and the single-layer substrate condition. Results presented by mechanical testing include hardness measurements and tensile tests as well as strain-controlled low-cycle fatigue and stress-controlled high-cycle fatigue tests. These results are discussed based on evolution of microstructure, residual stress, and defects, respectively, as elaborated by scanning electron microscopy, X-ray diffraction, and fracture surface analysis.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单面 100Cr6 包覆层对 S550MC 钢拉伸和疲劳性能的影响
新开发的热轧层状金属复合材料(LMC)的生产,使板材具有可调整的分级特性,成本效益高,适合大规模生产。由于这些 LMC 的许多预期应用(如离合器盘架)在使用寿命期间会受到循环载荷的影响,因此需要对其疲劳行为有基本的了解,以确保组件的安全可靠应用。因此,本研究重点关注由 S550MC 基体层和 100Cr6 包覆层组成的热轧双层 LMC 的疲劳行为。为了研究覆层的影响,直接比较了两种条件,即双层覆层钢和单层基体条件。机械测试结果包括硬度测量和拉伸试验,以及应变控制的低循环疲劳和应力控制的高循环疲劳试验。通过扫描电子显微镜、X 射线衍射和断裂表面分析,分别根据微观结构、残余应力和缺陷的演变对这些结果进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.30
自引率
18.90%
发文量
256
审稿时长
4 months
期刊介绍: Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.
期刊最新文献
Issue Information Study on the Deformation and Energy Evolution of Skarn With Marble Band of Different Orientations Under Cyclic Loading: A Lab-Scale Study Competitive Fracture Mechanism and Microstructure-Related Life Assessment of GH4169 Superalloy in High and Very High Cycle Fatigue Regimes Natural Seawater Impact on Crack Propagation and Fatigue Behavior of Welded Nickel Aluminum Bronze Phase field numerical strategies for positive volumetric strain energy fractures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1