Unveiling Potential of Gallium Ferrite (GaFeO3) as an Anode Material for Lithium-Ion Batteries

IF 3.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY ACS Omega Pub Date : 2024-09-13 DOI:10.1021/acsomega.4c0543710.1021/acsomega.4c05437
Mohan K. Bhattarai*, Shweta Shweta, Moses D. Ashie, Shivaraju Guddehalli Chandrappa*, Birendra Ale Magar, Bishnu P. Bastakoti, Ubaldo M. Córdova Figueroa, Ram S. Katiyar, Brad R. Weiner and Gerardo Morell, 
{"title":"Unveiling Potential of Gallium Ferrite (GaFeO3) as an Anode Material for Lithium-Ion Batteries","authors":"Mohan K. Bhattarai*,&nbsp;Shweta Shweta,&nbsp;Moses D. Ashie,&nbsp;Shivaraju Guddehalli Chandrappa*,&nbsp;Birendra Ale Magar,&nbsp;Bishnu P. Bastakoti,&nbsp;Ubaldo M. Córdova Figueroa,&nbsp;Ram S. Katiyar,&nbsp;Brad R. Weiner and Gerardo Morell,&nbsp;","doi":"10.1021/acsomega.4c0543710.1021/acsomega.4c05437","DOIUrl":null,"url":null,"abstract":"<p >Lithium-ion batteries (LIBs) serve as the backbone of modern technologies with ongoing efforts to enhance their performance and sustainability driving the exploration of new electrode materials. This study introduces a new type of alloy-conversion-based gallium ferrite (GFO: GaFeO<sub>3</sub>) as a potential anode material for Li-ion battery applications. The GFO was synthesized by a one-step mechanochemistry-assisted solid-state method. The powder X-ray diffraction analysis confirms the presence of an orthorhombic phase with the <i>Pc</i>2<sub>1</sub><i>n</i> space group. The photoelectron spectroscopy studies reveal the presence of Ga<sup>3+</sup> and Fe<sup>3+</sup> oxidation states of gallium and iron atoms in the GFO structure. The GFO was evaluated as an anode material for Li-ion battery applications, displaying a high discharge capacity of ∼887 mA h g<sup>–1</sup> and retaining a stable capacity of ∼200 mA h g<sup>–1</sup> over 450 cycles, with a Coulombic efficiency of 99.6 % at a current density of 100 mA g<sup>–1</sup>. Cyclic voltammetry studies confirm an alloy-conversion-based reaction mechanism in the GFO anode. Furthermore, density functional theory studies reveal the reaction mechanism during cycling and Li-ion diffusion pathways in the GFO anode. These results strongly suggest that the GFO could be an alternative anode material in LIBs.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c05437","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c05437","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium-ion batteries (LIBs) serve as the backbone of modern technologies with ongoing efforts to enhance their performance and sustainability driving the exploration of new electrode materials. This study introduces a new type of alloy-conversion-based gallium ferrite (GFO: GaFeO3) as a potential anode material for Li-ion battery applications. The GFO was synthesized by a one-step mechanochemistry-assisted solid-state method. The powder X-ray diffraction analysis confirms the presence of an orthorhombic phase with the Pc21n space group. The photoelectron spectroscopy studies reveal the presence of Ga3+ and Fe3+ oxidation states of gallium and iron atoms in the GFO structure. The GFO was evaluated as an anode material for Li-ion battery applications, displaying a high discharge capacity of ∼887 mA h g–1 and retaining a stable capacity of ∼200 mA h g–1 over 450 cycles, with a Coulombic efficiency of 99.6 % at a current density of 100 mA g–1. Cyclic voltammetry studies confirm an alloy-conversion-based reaction mechanism in the GFO anode. Furthermore, density functional theory studies reveal the reaction mechanism during cycling and Li-ion diffusion pathways in the GFO anode. These results strongly suggest that the GFO could be an alternative anode material in LIBs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭示镓铁氧体 (GaFeO3) 作为锂离子电池负极材料的潜力
锂离子电池(LIB)是现代技术的支柱,人们一直在努力提高其性能和可持续性,这也推动了对新型电极材料的探索。本研究介绍了一种新型合金转换型镓铁氧体(GFO:GaFeO3),作为一种潜在的锂离子电池负极材料。GFO 是通过一步机械化学辅助固态法合成的。粉末 X 射线衍射分析证实了 Pc21n 空间群正交相的存在。光电子能谱研究揭示了 GFO 结构中镓和铁原子的 Ga3+ 和 Fe3+ 氧化态。该 GFO 被评估为锂离子电池的阳极材料,在 100 mA g-1 的电流密度下,其放电容量高达 ∼887 mA h g-1,并在 450 次循环中保持了 ∼200 mA h g-1 的稳定容量,库仑效率为 99.6%。循环伏安法研究证实了 GFO 阳极基于合金转换的反应机制。此外,密度泛函理论研究揭示了 GFO 阳极在循环过程中的反应机制和锂离子扩散途径。这些结果有力地表明,GFO 可以作为锂离子电池的替代阳极材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Development of a 3D Printing-Enabled Cost-Effective Multimodal Raman Probe with High Signal-to-noise Ratio Raman Spectrum Measurements Affordable Two-Dimensional Layered Cd(II) Coordination Polymer: High-Performance Pseudocapacitor Electrode Behavior Comprehensive Exploration of Bromophenol Derivatives: Promising Antibacterial Agents against SA and MRSA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1