Unraveling the Molecular Landscape of SCN1A Gene Knockout in Cerebral Organoids: A Multiomics Approach Utilizing Proteomics, Lipidomics, and Transcriptomics

IF 3.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY ACS Omega Pub Date : 2024-09-13 DOI:10.1021/acsomega.4c0503910.1021/acsomega.4c05039
Byumseok Koh, Young Eun Kim, Sung Bum Park, Seong Soon Kim, Jangjae Lee, Jeong Hyeon Jo, KyungJin Lee, Dong Hyuck Bae, Tae-Young Kim, Sung-Hee Cho*, Myung Ae Bae*, Dukjin Kang* and Ki Young Kim*, 
{"title":"Unraveling the Molecular Landscape of SCN1A Gene Knockout in Cerebral Organoids: A Multiomics Approach Utilizing Proteomics, Lipidomics, and Transcriptomics","authors":"Byumseok Koh,&nbsp;Young Eun Kim,&nbsp;Sung Bum Park,&nbsp;Seong Soon Kim,&nbsp;Jangjae Lee,&nbsp;Jeong Hyeon Jo,&nbsp;KyungJin Lee,&nbsp;Dong Hyuck Bae,&nbsp;Tae-Young Kim,&nbsp;Sung-Hee Cho*,&nbsp;Myung Ae Bae*,&nbsp;Dukjin Kang* and Ki Young Kim*,&nbsp;","doi":"10.1021/acsomega.4c0503910.1021/acsomega.4c05039","DOIUrl":null,"url":null,"abstract":"<p >This study investigates the impact of sodium channel protein type 1 subunit alpha (SCN1A) gene knockout (SCN1A KO) on brain development and function using cerebral organoids coupled with a multiomics approach. From comprehensive omics analyses, we found that SCN1A KO organoids exhibit decreased growth, dysregulated neurotransmitter levels, and altered lipidomic, proteomic, and transcriptomic profiles compared to controls under matrix-free differentiation conditions. Neurochemical analysis reveals reduced levels of key neurotransmitters, and lipidomic analysis highlights changes in ether phospholipids and sphingomyelin. Furthermore, quantitative profiling of the SCN1A KO organoid proteome shows perturbations in cholesterol metabolism and sodium ion transportation, potentially affecting synaptic transmission. These findings suggest dysregulation of cholesterol metabolism and sodium ion transport, with implications for synaptic transmission. Overall, these insights shed light on the molecular mechanisms underlying SCN1A-associated disorders, such as Dravet syndrome, and offer potential avenues for therapeutic intervention.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c05039","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c05039","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the impact of sodium channel protein type 1 subunit alpha (SCN1A) gene knockout (SCN1A KO) on brain development and function using cerebral organoids coupled with a multiomics approach. From comprehensive omics analyses, we found that SCN1A KO organoids exhibit decreased growth, dysregulated neurotransmitter levels, and altered lipidomic, proteomic, and transcriptomic profiles compared to controls under matrix-free differentiation conditions. Neurochemical analysis reveals reduced levels of key neurotransmitters, and lipidomic analysis highlights changes in ether phospholipids and sphingomyelin. Furthermore, quantitative profiling of the SCN1A KO organoid proteome shows perturbations in cholesterol metabolism and sodium ion transportation, potentially affecting synaptic transmission. These findings suggest dysregulation of cholesterol metabolism and sodium ion transport, with implications for synaptic transmission. Overall, these insights shed light on the molecular mechanisms underlying SCN1A-associated disorders, such as Dravet syndrome, and offer potential avenues for therapeutic intervention.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭示脑器质性细胞中 SCN1A 基因敲除的分子图谱:利用蛋白质组学、脂质组学和转录组学的多组学方法
本研究采用多组学方法,利用脑器官组织研究钠通道蛋白1型亚基α(SCN1A)基因敲除(SCN1A KO)对大脑发育和功能的影响。通过全面的全局组学分析,我们发现在无基质分化条件下,与对照组相比,SCN1A KO 器官表现出生长下降、神经递质水平失调以及脂质组、蛋白质组和转录组特征的改变。神经化学分析揭示了关键神经递质水平的降低,脂质体分析则突显了醚磷脂和鞘磷脂的变化。此外,SCN1A KO类器官蛋白质组的定量分析显示胆固醇代谢和钠离子运输发生了紊乱,可能会影响突触传递。这些发现表明胆固醇代谢和钠离子转运失调,对突触传递有影响。总之,这些发现揭示了与 SCN1A 相关的疾病(如德拉沃综合征)的分子机制,并为治疗干预提供了潜在的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Development of a 3D Printing-Enabled Cost-Effective Multimodal Raman Probe with High Signal-to-noise Ratio Raman Spectrum Measurements Affordable Two-Dimensional Layered Cd(II) Coordination Polymer: High-Performance Pseudocapacitor Electrode Behavior Comprehensive Exploration of Bromophenol Derivatives: Promising Antibacterial Agents against SA and MRSA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1