Design, synthesis, and evaluation of a novel TRAIL-activated HDAC6 inhibitor for the treatment of pulmonary fibrosis

IF 3.3 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Bioorganic & Medicinal Chemistry Pub Date : 2024-09-12 DOI:10.1016/j.bmc.2024.117924
{"title":"Design, synthesis, and evaluation of a novel TRAIL-activated HDAC6 inhibitor for the treatment of pulmonary fibrosis","authors":"","doi":"10.1016/j.bmc.2024.117924","DOIUrl":null,"url":null,"abstract":"<div><div>Pulmonary fibrosis (PF) is a common, severe, chronic, and progressive pulmonary interstitial disease characterized by rapid disease progression and high mortality. Despite the Food and Drug Administration (FDA)’s approval of two antifibrotic drugs, nintedanib and pirfenidone, effectively halting the progression of pulmonary fibrosis remains challenging. Histone deacetylase (HDAC) inhibitors have indeed emerged as an important class of antitumour drugs. However, their application in the treatment of fibrotic diseases is still relatively limited. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) has the potential to inhibit fibrotic processes by inducing fibroblast apoptosis. In this study, we designed and synthesized a series of histone deacetylase 6 (HDAC6) inhibitors that activate TRAIL, among which compound <strong>7e</strong> exhibited potent inhibitory activity against HDAC6, with an IC<sub>50</sub> of 42.90 ± 4.96 nM and superior antiproliferative effects on fibroblasts. Therefore, we further investigated its anti-pulmonary fibrosis effect in mouse models of both idiopathic pulmonary fibrosis (IPF) and silicosis. Our results suggest that compound <strong>7e</strong> is a promising candidate for the treatment of pulmonary fibrosis.</div></div>","PeriodicalId":255,"journal":{"name":"Bioorganic & Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic & Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968089624003389","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pulmonary fibrosis (PF) is a common, severe, chronic, and progressive pulmonary interstitial disease characterized by rapid disease progression and high mortality. Despite the Food and Drug Administration (FDA)’s approval of two antifibrotic drugs, nintedanib and pirfenidone, effectively halting the progression of pulmonary fibrosis remains challenging. Histone deacetylase (HDAC) inhibitors have indeed emerged as an important class of antitumour drugs. However, their application in the treatment of fibrotic diseases is still relatively limited. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) has the potential to inhibit fibrotic processes by inducing fibroblast apoptosis. In this study, we designed and synthesized a series of histone deacetylase 6 (HDAC6) inhibitors that activate TRAIL, among which compound 7e exhibited potent inhibitory activity against HDAC6, with an IC50 of 42.90 ± 4.96 nM and superior antiproliferative effects on fibroblasts. Therefore, we further investigated its anti-pulmonary fibrosis effect in mouse models of both idiopathic pulmonary fibrosis (IPF) and silicosis. Our results suggest that compound 7e is a promising candidate for the treatment of pulmonary fibrosis.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
设计、合成和评估用于治疗肺纤维化的新型 TRAIL 激活型 HDAC6 抑制剂
肺纤维化(PF)是一种常见、严重、慢性和进行性肺间质疾病,其特点是疾病进展快、死亡率高。尽管美国食品和药物管理局(FDA)批准了两种抗纤维化药物--宁替达尼(nintedanib)和吡非尼酮(pirfenidone),但有效阻止肺纤维化的进展仍是一项挑战。组蛋白去乙酰化酶(HDAC)抑制剂确实已成为一类重要的抗肿瘤药物。然而,它们在治疗纤维化疾病方面的应用仍然相对有限。肿瘤坏死因子相关凋亡诱导配体(TRAIL)可通过诱导成纤维细胞凋亡来抑制纤维化过程。在本研究中,我们设计并合成了一系列可激活 TRAIL 的组蛋白去乙酰化酶 6(HDAC6)抑制剂,其中化合物 7e 对 HDAC6 具有强效的抑制活性,IC50 为 42.90 ± 4.96 nM,对成纤维细胞具有优异的抗增殖作用。因此,我们在特发性肺纤维化(IPF)和矽肺小鼠模型中进一步研究了它的抗肺纤维化作用。我们的研究结果表明,化合物 7e 是一种治疗肺纤维化的有望候选化合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioorganic & Medicinal Chemistry
Bioorganic & Medicinal Chemistry 医学-生化与分子生物学
CiteScore
6.80
自引率
2.90%
发文量
413
审稿时长
17 days
期刊介绍: Bioorganic & Medicinal Chemistry provides an international forum for the publication of full original research papers and critical reviews on molecular interactions in key biological targets such as receptors, channels, enzymes, nucleotides, lipids and saccharides. The aim of the journal is to promote a better understanding at the molecular level of life processes, and living organisms, as well as the interaction of these with chemical agents. A special feature will be that colour illustrations will be reproduced at no charge to the author, provided that the Editor agrees that colour is essential to the information content of the illustration in question.
期刊最新文献
A methamphetamine vaccine using short monoamine and diamine peptide linkers and poly-mannose Research progress of BRD4 in head and neck squamous cell carcinoma: Therapeutic application of novel strategies and mechanisms Design, synthesis and biological evaluation of novel diphenylamine analogues as NLRP3 inflammasome inhibitors Synthesis of phenanthridine derivatives by a water-compatible gold-catalyzed hydroamination Current pharmacophore based approaches for the development of new anti-Alzheimer’s agents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1