Bioactive compounds from food-grade Bacillus.

IF 3.3 2区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY Journal of the Science of Food and Agriculture Pub Date : 2024-10-07 DOI:10.1002/jsfa.13935
Steji Raphel, Prakash Motiram Halami
{"title":"Bioactive compounds from food-grade Bacillus.","authors":"Steji Raphel, Prakash Motiram Halami","doi":"10.1002/jsfa.13935","DOIUrl":null,"url":null,"abstract":"<p><p>Bacillus species have attracted significant attention in recent years due to their potential for producing various bioactive compounds with diverse functional properties. This review highlights bioactive substances from food-grade Bacillus strains and their applications in functional foods and nutraceuticals. The metabolic capacities of Bacillus species have allowed them to generate a wide range of bioactive substances, including vitamins, enzymes, anti-microbial peptides, and other non-ribosomal peptides. These substances have a variety of positive effects, including potential cholesterol-lowering and immune-modulatory qualities in addition to anti-oxidant and anti-bacterial actions. The uses and mechanisms of action of these bioactive chemicals can be used to improve the functional qualities and nutritional profile of food products. Examples include the use of anti-microbial peptides to increase safety and shelf life, as well as the use of Bacillus-derived enzymes in food processing to improve digestibility and sensory qualities. The exploitation of bioactive compounds from food-grade Bacillus strains presents a promising frontier in the development of functional foods and nutraceuticals with enhanced health benefits. Due to their wide range of activity and applications, they are considered as important resources for the development of novel medications, agricultural biocontrol agents, and industrial enzymes. Ongoing research into the biosynthetic pathways, functional properties, and applications of these compounds is essential to fully realize their potential in the food industry. This review underscores the significance of various bioactive compounds generated from Bacillus in tackling global issues like environmental sustainability, sustainable agriculture, and antibiotic resistance. Future developments in microbiology and biotechnology will enable us to fully utilize the potential of these amazing microbes, resulting in novel approaches to industry, agriculture, and health. © 2024 Society of Chemical Industry.</p>","PeriodicalId":17725,"journal":{"name":"Journal of the Science of Food and Agriculture","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Science of Food and Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/jsfa.13935","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Bacillus species have attracted significant attention in recent years due to their potential for producing various bioactive compounds with diverse functional properties. This review highlights bioactive substances from food-grade Bacillus strains and their applications in functional foods and nutraceuticals. The metabolic capacities of Bacillus species have allowed them to generate a wide range of bioactive substances, including vitamins, enzymes, anti-microbial peptides, and other non-ribosomal peptides. These substances have a variety of positive effects, including potential cholesterol-lowering and immune-modulatory qualities in addition to anti-oxidant and anti-bacterial actions. The uses and mechanisms of action of these bioactive chemicals can be used to improve the functional qualities and nutritional profile of food products. Examples include the use of anti-microbial peptides to increase safety and shelf life, as well as the use of Bacillus-derived enzymes in food processing to improve digestibility and sensory qualities. The exploitation of bioactive compounds from food-grade Bacillus strains presents a promising frontier in the development of functional foods and nutraceuticals with enhanced health benefits. Due to their wide range of activity and applications, they are considered as important resources for the development of novel medications, agricultural biocontrol agents, and industrial enzymes. Ongoing research into the biosynthetic pathways, functional properties, and applications of these compounds is essential to fully realize their potential in the food industry. This review underscores the significance of various bioactive compounds generated from Bacillus in tackling global issues like environmental sustainability, sustainable agriculture, and antibiotic resistance. Future developments in microbiology and biotechnology will enable us to fully utilize the potential of these amazing microbes, resulting in novel approaches to industry, agriculture, and health. © 2024 Society of Chemical Industry.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从食品级芽孢杆菌中提取生物活性化合物。
近年来,芽孢杆菌因其生产具有各种功能特性的生物活性化合物的潜力而备受关注。本综述重点介绍食品级芽孢杆菌菌株中的生物活性物质及其在功能食品和营养保健品中的应用。芽孢杆菌的新陈代谢能力使其能够产生多种生物活性物质,包括维生素、酶、抗微生物肽和其他非核糖体肽。这些物质具有多种积极作用,除了抗氧化和抗菌作用外,还具有潜在的降低胆固醇和免疫调节作用。这些生物活性化学物质的用途和作用机制可用于改善食品的功能质量和营养成分。例如,使用抗微生物肽来提高安全性和延长保质期,以及在食品加工中使用芽孢杆菌衍生酶来提高消化率和感官质量。从食品级芽孢杆菌菌株中提取生物活性化合物,为开发有益健康的功能性食品和营养保健品提供了一个前景广阔的前沿领域。由于芽孢杆菌具有广泛的活性和应用,它们被认为是开发新型药物、农业生物控制剂和工业酶的重要资源。对这些化合物的生物合成途径、功能特性和应用的持续研究对于充分发挥它们在食品工业中的潜力至关重要。本综述强调了由芽孢杆菌产生的各种生物活性化合物在解决环境可持续性、可持续农业和抗生素耐药性等全球性问题方面的重要意义。微生物学和生物技术的未来发展将使我们能够充分利用这些神奇微生物的潜力,为工业、农业和健康领域带来新的方法。© 2024 化学工业学会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.10
自引率
4.90%
发文量
634
审稿时长
3.1 months
期刊介绍: The Journal of the Science of Food and Agriculture publishes peer-reviewed original research, reviews, mini-reviews, perspectives and spotlights in these areas, with particular emphasis on interdisciplinary studies at the agriculture/ food interface. Published for SCI by John Wiley & Sons Ltd. SCI (Society of Chemical Industry) is a unique international forum where science meets business on independent, impartial ground. Anyone can join and current Members include consumers, business people, environmentalists, industrialists, farmers, and researchers. The Society offers a chance to share information between sectors as diverse as food and agriculture, pharmaceuticals, biotechnology, materials, chemicals, environmental science and safety. As well as organising educational events, SCI awards a number of prestigious honours and scholarships each year, publishes peer-reviewed journals, and provides Members with news from their sectors in the respected magazine, Chemistry & Industry . Originally established in London in 1881 and in New York in 1894, SCI is a registered charity with Members in over 70 countries.
期刊最新文献
Fluorescent nanoparticles from roast duck induce cell damage and physiological dysfunction in Caenorhabditis elegans. Effects of catechins, resveratrol, silymarin components and some of their conjugates on xanthine oxidase-catalyzed xanthine and 6-mercaptopurine oxidation. The effect of enzymatic deamidation on the solubility and emulsifying properties of walnut protein isolate. The use of heat-treated whey protein isolate as a natural emulsifier in fat-filled whey powder with a pre-emulsification process. A novel polysaccharide from Macadamia peel: Extraction, purification, structural characterization and antioxidant activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1