Using physicochemical properties to predict the impact of natural dissolved organic carbon on transepithelial potential in the freshwater rainbow trout (Oncorhynchus mykiss) at neutral and acidic pH.
Carolyn Morris, Samantha Zulian, D Scott Smith, Colin J Brauner, Chris M Wood
{"title":"Using physicochemical properties to predict the impact of natural dissolved organic carbon on transepithelial potential in the freshwater rainbow trout (Oncorhynchus mykiss) at neutral and acidic pH.","authors":"Carolyn Morris, Samantha Zulian, D Scott Smith, Colin J Brauner, Chris M Wood","doi":"10.1007/s10695-024-01409-3","DOIUrl":null,"url":null,"abstract":"<p><p>Dissolved organic carbon (DOC) is a complex mixture of molecules that varies in composition based on origin as well as spatial and temporal factors. DOC is an important water quality parameter as it regulates many biological processes in freshwater systems, including the physiological function of the gills in fish. These effects are often beneficial, especially at low pH where DOCs mitigate ion loss and protect active ion uptake. DOCs of different compositions and quality have varied ionoregulatory effects. The molecular variability of DOCs can be characterized using optical and chemical indices, but how these indices relate to the physiological effects exerted by DOCs is not well understood. We tested the effects of five naturally sourced DOCs, at both pH 7 and pH 4, on transepithelial potential (TEP) (a diffusion potential between the blood plasma and the external water) in rainbow trout. The five chosen DOCs have been well characterized and span large differences in physicochemical characteristics. Each of the DOCs significantly influenced TEP, although in a unique manner or magnitude which was likely due to their physicochemical characteristics. These TEP responses were also a function of pH. With the goal of determining which physicochemical indices are predictive of changes in TEP, we evaluated correlations between various indices and TEP at pH 7 and pH 4. The indices included: specific absorbance coefficient at 340 nm, molecular weight index, fluorescence index, octanol-water partition coefficient, molecular charge, proton binding index, % humic acid-like, % fulvic acid-like, and % protein-like components by parallel factor analysis on fluorescence data (PARAFAC). Our results demonstrate the novel finding that there are three particularly important indices that are predictors of changes in TEP across pHs in rainbow trout: specific absorbance coefficient at 340 nm, octanol-water partition coefficient; and proton binding index.</p>","PeriodicalId":12274,"journal":{"name":"Fish Physiology and Biochemistry","volume":" ","pages":"2619-2635"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish Physiology and Biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10695-024-01409-3","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Dissolved organic carbon (DOC) is a complex mixture of molecules that varies in composition based on origin as well as spatial and temporal factors. DOC is an important water quality parameter as it regulates many biological processes in freshwater systems, including the physiological function of the gills in fish. These effects are often beneficial, especially at low pH where DOCs mitigate ion loss and protect active ion uptake. DOCs of different compositions and quality have varied ionoregulatory effects. The molecular variability of DOCs can be characterized using optical and chemical indices, but how these indices relate to the physiological effects exerted by DOCs is not well understood. We tested the effects of five naturally sourced DOCs, at both pH 7 and pH 4, on transepithelial potential (TEP) (a diffusion potential between the blood plasma and the external water) in rainbow trout. The five chosen DOCs have been well characterized and span large differences in physicochemical characteristics. Each of the DOCs significantly influenced TEP, although in a unique manner or magnitude which was likely due to their physicochemical characteristics. These TEP responses were also a function of pH. With the goal of determining which physicochemical indices are predictive of changes in TEP, we evaluated correlations between various indices and TEP at pH 7 and pH 4. The indices included: specific absorbance coefficient at 340 nm, molecular weight index, fluorescence index, octanol-water partition coefficient, molecular charge, proton binding index, % humic acid-like, % fulvic acid-like, and % protein-like components by parallel factor analysis on fluorescence data (PARAFAC). Our results demonstrate the novel finding that there are three particularly important indices that are predictors of changes in TEP across pHs in rainbow trout: specific absorbance coefficient at 340 nm, octanol-water partition coefficient; and proton binding index.
期刊介绍:
Fish Physiology and Biochemistry is an international journal publishing original research papers in all aspects of the physiology and biochemistry of fishes. Coverage includes experimental work in such topics as biochemistry of organisms, organs, tissues and cells; structure of organs, tissues, cells and organelles related to their function; nutritional, osmotic, ionic, respiratory and excretory homeostasis; nerve and muscle physiology; endocrinology; reproductive physiology; energetics; biochemical and physiological effects of toxicants; molecular biology and biotechnology and more.