Aggregation-induced emissive copper nanoclusters with peroxidase-like activity for colorimetric detection of cholesterol.

IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Nanotechnology Pub Date : 2024-10-10 DOI:10.1088/1361-6528/ad8582
Yang Wang, Wei Wang, Yuan Fang, Dengwu Tao, Kaiyan Tang, Jinshan Nie, Baisong Chang
{"title":"Aggregation-induced emissive copper nanoclusters with peroxidase-like activity for colorimetric detection of cholesterol.","authors":"Yang Wang, Wei Wang, Yuan Fang, Dengwu Tao, Kaiyan Tang, Jinshan Nie, Baisong Chang","doi":"10.1088/1361-6528/ad8582","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate and point-of-care cholesterol detection is of paramount significance for the prevention of cardiovascular diseases. The colorimetric assay based on peroxidase is a commonly used approach for cholesterol detection, without requiring any complicated biomolecular labeling or sophisticated instrumentation. Copper nanoclusters (CuNCs), exhibiting luminescent properties and peroxidase activity, have garnered significant attention in biomedical application recently. Herein, the glutathione-stabilized copper nanoclusters (GSH-CuNCs) were prepared with an easy one-pot method, employing glutathione as both a reducing agent and stabilizer. An optimization of the GSH-CuNCs preparation was carried out to obtain the highest peroxidase-like activity. UV-Vis absorption was measured to explore the steady-state kinetics of the GSH-CuNCs-catalyzed oxidation of 3,3',5,5' - tetramethylbenzidine (TMB) by H2O2. A colorimetric method for cholesterol detection was developed by combining the catalytic reaction of CuNCs and the enzymatic oxidation of cholesterol with cholesterol oxidase (ChOx). Under the optimized conditions, the UV-Vis absorbance of oxidized TMB (oxTMB) is proportional to the concentration of cholesterol within the range of 6.2-187.5 μM, and the limit of detection (LOD) is determined to be 3.0 μM. More importantly, cholesterol levels can be directly distinguished with the naked eye. Furthermore, the practicality of the method for detecting cholesterol in human serum has been verified with promising results. As expected, this simple, cost-effective, and easy-to-operate colorimetric method for cholesterol detection has potential applications in clinical diagnosis and provides valuable insights into the colorimetric sensing based on CuNCs.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ad8582","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate and point-of-care cholesterol detection is of paramount significance for the prevention of cardiovascular diseases. The colorimetric assay based on peroxidase is a commonly used approach for cholesterol detection, without requiring any complicated biomolecular labeling or sophisticated instrumentation. Copper nanoclusters (CuNCs), exhibiting luminescent properties and peroxidase activity, have garnered significant attention in biomedical application recently. Herein, the glutathione-stabilized copper nanoclusters (GSH-CuNCs) were prepared with an easy one-pot method, employing glutathione as both a reducing agent and stabilizer. An optimization of the GSH-CuNCs preparation was carried out to obtain the highest peroxidase-like activity. UV-Vis absorption was measured to explore the steady-state kinetics of the GSH-CuNCs-catalyzed oxidation of 3,3',5,5' - tetramethylbenzidine (TMB) by H2O2. A colorimetric method for cholesterol detection was developed by combining the catalytic reaction of CuNCs and the enzymatic oxidation of cholesterol with cholesterol oxidase (ChOx). Under the optimized conditions, the UV-Vis absorbance of oxidized TMB (oxTMB) is proportional to the concentration of cholesterol within the range of 6.2-187.5 μM, and the limit of detection (LOD) is determined to be 3.0 μM. More importantly, cholesterol levels can be directly distinguished with the naked eye. Furthermore, the practicality of the method for detecting cholesterol in human serum has been verified with promising results. As expected, this simple, cost-effective, and easy-to-operate colorimetric method for cholesterol detection has potential applications in clinical diagnosis and provides valuable insights into the colorimetric sensing based on CuNCs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有过氧化物酶样活性的聚合诱导发射型纳米铜簇,可用于胆固醇的比色检测。
准确的床旁胆固醇检测对预防心血管疾病具有重要意义。基于过氧化物酶的比色法是一种常用的胆固醇检测方法,无需任何复杂的生物分子标记或精密仪器。纳米铜簇(CuNCs)具有发光特性和过氧化物酶活性,近来在生物医学应用中备受关注。本文采用简单的一锅法,利用谷胱甘肽作为还原剂和稳定剂,制备了谷胱甘肽稳定的纳米铜簇(GSH-CuNCs)。对 GSH-CuNCs 的制备进行了优化,以获得最高的过氧化物酶样活性。测量了紫外-可见吸收,以探究 GSH-CuNCs 催化 H2O2 氧化 3,3',5,5' - 四甲基联苯胺(TMB)的稳态动力学。通过结合 CuNCs 的催化反应和胆固醇氧化酶(ChOx)对胆固醇的酶促氧化作用,开发了一种检测胆固醇的比色法。在优化条件下,氧化 TMB(oxTMB)的紫外可见吸光度在 6.2-187.5 μM 范围内与胆固醇浓度成正比,检测限(LOD)确定为 3.0 μM。更重要的是,胆固醇含量可以用肉眼直接分辨。此外,该方法用于检测人体血清中胆固醇的实用性已得到验证,结果令人鼓舞。正如预期的那样,这种简单、经济、易操作的胆固醇检测比色法有望应用于临床诊断,并为基于 CuNCs 的比色传感提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanotechnology
Nanotechnology 工程技术-材料科学:综合
CiteScore
7.10
自引率
5.70%
发文量
820
审稿时长
2.5 months
期刊介绍: The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.
期刊最新文献
Friction-enhanced formation of Cu microwire on Si wafer. Quantum dots synthesis within ternary III-V nanowire towards light emitters in quantum photonic circuits: a review. Mapping nanoparticle formation and substrate heating effects: a fluence-resolved approach to pulsed laser-induced dewetting. Understanding the competing growth of 2D and 3D transition metal dichalcogenides in a chemical vapor deposition (CVD) reactor. Thermal expansion of boron nitride nanotubes and additively manufactured ceramic nanocomposites.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1