{"title":"A comprehensive review of state-of-the-art biosensors for detection of allergenic substance lysozyme: A structured recent review and update","authors":"Alireza Ebrahimi , Reza Abedi-Firoozjah , Ali Ehsani , Hamed Hamishehkar , Milad Tavassoli","doi":"10.1016/j.microc.2024.111805","DOIUrl":null,"url":null,"abstract":"<div><div>Lysozyme (LZM) is a major allergenic protein found in different foods, such as chicken eggs, primarily in the egg white. It can cause adverse reactions in sensitive individuals, leading to symptoms ranging from mild hives to life-threatening anaphylactic shock. Therefore, it’s crucial for those with allergies to avoid any contact with LZM and foods containing it. Reliable analytical methods are essential to ensure consumer safety and improve food production through hazard analysis and good manufacturing practices. The following review article provides an overview of recent progress in biosensors used for the detection of LZM. This article developed a comprehensive review of the main applications of LZM detection, emphasizing the advantages and disadvantages of common analytical techniques such as conventional methods (DNA-based methods and ELISA/Immunochromatography assay/Immunoassay/Mass spectrometry) and modern methods (biosensors such as electrochemical, optical, molecularly imprinted polymers and magnetoelastic sensing). Subsequently, it delves into the developments in biosensors pertaining to the detection mechanisms, including the utilization of nanomaterials as signal probes and carriers for loading signal probes, while also addressing their sensitivity and performance evaluation. Lastly, it discusses the challenges and potential opportunities in the advancement of biosensors for LZM detection.</div></div>","PeriodicalId":391,"journal":{"name":"Microchemical Journal","volume":"207 ","pages":"Article 111805"},"PeriodicalIF":4.9000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchemical Journal","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026265X24019179","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Lysozyme (LZM) is a major allergenic protein found in different foods, such as chicken eggs, primarily in the egg white. It can cause adverse reactions in sensitive individuals, leading to symptoms ranging from mild hives to life-threatening anaphylactic shock. Therefore, it’s crucial for those with allergies to avoid any contact with LZM and foods containing it. Reliable analytical methods are essential to ensure consumer safety and improve food production through hazard analysis and good manufacturing practices. The following review article provides an overview of recent progress in biosensors used for the detection of LZM. This article developed a comprehensive review of the main applications of LZM detection, emphasizing the advantages and disadvantages of common analytical techniques such as conventional methods (DNA-based methods and ELISA/Immunochromatography assay/Immunoassay/Mass spectrometry) and modern methods (biosensors such as electrochemical, optical, molecularly imprinted polymers and magnetoelastic sensing). Subsequently, it delves into the developments in biosensors pertaining to the detection mechanisms, including the utilization of nanomaterials as signal probes and carriers for loading signal probes, while also addressing their sensitivity and performance evaluation. Lastly, it discusses the challenges and potential opportunities in the advancement of biosensors for LZM detection.
期刊介绍:
The Microchemical Journal is a peer reviewed journal devoted to all aspects and phases of analytical chemistry and chemical analysis. The Microchemical Journal publishes articles which are at the forefront of modern analytical chemistry and cover innovations in the techniques to the finest possible limits. This includes fundamental aspects, instrumentation, new developments, innovative and novel methods and applications including environmental and clinical field.
Traditional classical analytical methods such as spectrophotometry and titrimetry as well as established instrumentation methods such as flame and graphite furnace atomic absorption spectrometry, gas chromatography, and modified glassy or carbon electrode electrochemical methods will be considered, provided they show significant improvements and novelty compared to the established methods.