Macrophage membrane-functionalized manganese dioxide nanomedicine for synergistic treatment of atherosclerosis by mitigating inflammatory storms and promoting cholesterol efflux.

IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of Nanobiotechnology Pub Date : 2024-10-28 DOI:10.1186/s12951-024-02939-x
Sijin Chen, Wenli Zhang, Chun Tang, Xiyue Rong, Yun Liu, Ying Luo, Lian Xu, Zhongsheng Xu, Junrui Wang, Yi Wang, Qianying Du, Bo Liu, Yu Zhang, Jia Liu, Dajing Guo
{"title":"Macrophage membrane-functionalized manganese dioxide nanomedicine for synergistic treatment of atherosclerosis by mitigating inflammatory storms and promoting cholesterol efflux.","authors":"Sijin Chen, Wenli Zhang, Chun Tang, Xiyue Rong, Yun Liu, Ying Luo, Lian Xu, Zhongsheng Xu, Junrui Wang, Yi Wang, Qianying Du, Bo Liu, Yu Zhang, Jia Liu, Dajing Guo","doi":"10.1186/s12951-024-02939-x","DOIUrl":null,"url":null,"abstract":"<p><p>Atherosclerosis (AS) poses a significant threat to human life and health. However, conventional antiatherogenic medications exhibit insufficient targeting precision and restricted therapeutic effectiveness. Moreover, during the progression of AS, macrophages undergo polarization toward the proinflammatory M1 phenotype and generate reactive oxygen species (ROS) to accelerate the occurrence of inflammatory storms, and ingest excess lipids to form foam cells by inhibiting cholesterol efflux. In our study, we developed a macrophage membrane-functionalized hollow mesoporous manganese dioxide nanomedicine (Col@HMnO<sub>2</sub>-MM). This nanomedicine has the ability to evade immune cell phagocytosis, enables prolonged circulation within the body, targets the inflammatory site of AS for effective drug release, and alleviates the inflammatory storm at the AS site by eliminating ROS. Furthermore, Col@HMnO<sub>2</sub>-MM has the ability to generate oxygen autonomously by breaking down surplus hydrogen peroxide generated at the inflammatory AS site, thereby reducing the hypoxic microenvironment of the plaque by downregulating hypoxia-inducible factor (HIF-1α), which in turn enhances cholesterol efflux to inhibit foam cell formation. In an APOE<sup>-/-</sup> mouse model, Col@HMnO<sub>2</sub>-MM significantly reduced inflammatory factor levels, lipid storage, and plaque formation without significant long-term toxicity. In summary, this synergistic treatment significantly improved the effectiveness of nanomedicine and may offer a novel strategy for precise AS therapy.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"664"},"PeriodicalIF":10.6000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11514794/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-024-02939-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Atherosclerosis (AS) poses a significant threat to human life and health. However, conventional antiatherogenic medications exhibit insufficient targeting precision and restricted therapeutic effectiveness. Moreover, during the progression of AS, macrophages undergo polarization toward the proinflammatory M1 phenotype and generate reactive oxygen species (ROS) to accelerate the occurrence of inflammatory storms, and ingest excess lipids to form foam cells by inhibiting cholesterol efflux. In our study, we developed a macrophage membrane-functionalized hollow mesoporous manganese dioxide nanomedicine (Col@HMnO2-MM). This nanomedicine has the ability to evade immune cell phagocytosis, enables prolonged circulation within the body, targets the inflammatory site of AS for effective drug release, and alleviates the inflammatory storm at the AS site by eliminating ROS. Furthermore, Col@HMnO2-MM has the ability to generate oxygen autonomously by breaking down surplus hydrogen peroxide generated at the inflammatory AS site, thereby reducing the hypoxic microenvironment of the plaque by downregulating hypoxia-inducible factor (HIF-1α), which in turn enhances cholesterol efflux to inhibit foam cell formation. In an APOE-/- mouse model, Col@HMnO2-MM significantly reduced inflammatory factor levels, lipid storage, and plaque formation without significant long-term toxicity. In summary, this synergistic treatment significantly improved the effectiveness of nanomedicine and may offer a novel strategy for precise AS therapy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
巨噬细胞膜功能化纳米二氧化锰药物通过减轻炎症风暴和促进胆固醇外流协同治疗动脉粥样硬化。
动脉粥样硬化(AS)对人类的生命和健康构成重大威胁。然而,传统的抗动脉粥样硬化药物靶向不够精准,治疗效果有限。此外,在动脉粥样硬化进展过程中,巨噬细胞会向促炎的 M1 表型极化,产生活性氧(ROS),加速炎症风暴的发生,并通过抑制胆固醇外流摄取过量脂质形成泡沫细胞。在我们的研究中,我们开发了一种巨噬细胞膜功能化中空介孔二氧化锰纳米药物(Col@HMnO2-MM)。这种纳米药物能够躲避免疫细胞的吞噬作用,在体内长时间循环,针对强直性脊柱炎的炎症部位有效释放药物,并通过消除 ROS 缓解强直性脊柱炎部位的炎症风暴。此外,Col@HMnO2-MM 还能通过分解强直性脊柱炎炎症部位产生的多余过氧化氢而自主产生氧气,从而通过下调缺氧诱导因子(HIF-1α)来减少斑块的缺氧微环境,进而增强胆固醇外流以抑制泡沫细胞的形成。在 APOE-/- 小鼠模型中,Col@HMnO2-MM 能显著降低炎症因子水平、脂质储存和斑块形成,且无明显的长期毒性。总之,这种协同治疗方法大大提高了纳米药物的疗效,可为强直性脊柱炎的精确治疗提供一种新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
期刊最新文献
Microenvironment-optimized gastrodin-functionalized scaffolds orchestrate asymmetric division of recruited stem cells in endogenous bone regeneration. Mechanism of cold exposure delaying wound healing in mice. Microfluidic-engineered Chinese herbal nanocomposite hydrogel microspheres for diabetic wound tissue regeneration. Endothelial cell-derived exosomes trigger a positive feedback loop in osteogenesis-angiogenesis coupling via up-regulating zinc finger and BTB domain containing 16 in bone marrow mesenchymal stem cell. Physical, biochemical, and biological characterization of olive-derived lipid nanovesicles for drug delivery applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1