Channel Mobility With Higher-k Doped-HfO₂ for CMOS Logic

IF 2.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Electron Devices Pub Date : 2024-10-09 DOI:10.1109/TED.2024.3466843
Song-Hyeon Kuk;Kyul Ko;Bong Ho Kim;Hyeong-Rak Lim;Joon Pyo Kim;Jae-Hoon Han;Sang-Hyeon Kim
{"title":"Channel Mobility With Higher-k Doped-HfO₂ for CMOS Logic","authors":"Song-Hyeon Kuk;Kyul Ko;Bong Ho Kim;Hyeong-Rak Lim;Joon Pyo Kim;Jae-Hoon Han;Sang-Hyeon Kim","doi":"10.1109/TED.2024.3466843","DOIUrl":null,"url":null,"abstract":"The integration of higher dielectric constant (higher-k) gate oxides, such as doped-HfO2, in field-effect-transistors (FETs) has gained attention for further reducing the equivalent oxide thickness (EOT) in the advanced CMOS technology. However, the gate oxide in the MOSFET should be carefully selected considering the enhancement of the inversion carrier surface density (\n<inline-formula> <tex-math>${N}_{\\text {s}, \\text {inv}}$ </tex-math></inline-formula>\n) and channel mobility (\n<inline-formula> <tex-math>$\\mu _{\\text {ch}}$ </tex-math></inline-formula>\n), which has been a less concern in doped-HfO2. We study \n<inline-formula> <tex-math>$\\mu _{\\text {ch}}$ </tex-math></inline-formula>\n and \n<inline-formula> <tex-math>${N}_{\\text {s}, \\text {inv}}$ </tex-math></inline-formula>\n in higher-k n-/p-channel FET (n/pFET) through gated-Hall measurement. Importantly, \n<inline-formula> <tex-math>$\\mu _{\\text {ch}}$ </tex-math></inline-formula>\n is not degraded by higher-k doped-HfO2, unlike conventional integrations of high-k gate oxides. This finding shows that using higher-k doped-HfO2 for the gate oxide promises a potential for achieving higher drain current without mobility degradation and without reducing the gate oxide thickness, compared to paraelectric HfO2.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"71 11","pages":"6534-6538"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10710630/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of higher dielectric constant (higher-k) gate oxides, such as doped-HfO2, in field-effect-transistors (FETs) has gained attention for further reducing the equivalent oxide thickness (EOT) in the advanced CMOS technology. However, the gate oxide in the MOSFET should be carefully selected considering the enhancement of the inversion carrier surface density ( ${N}_{\text {s}, \text {inv}}$ ) and channel mobility ( $\mu _{\text {ch}}$ ), which has been a less concern in doped-HfO2. We study $\mu _{\text {ch}}$ and ${N}_{\text {s}, \text {inv}}$ in higher-k n-/p-channel FET (n/pFET) through gated-Hall measurement. Importantly, $\mu _{\text {ch}}$ is not degraded by higher-k doped-HfO2, unlike conventional integrations of high-k gate oxides. This finding shows that using higher-k doped-HfO2 for the gate oxide promises a potential for achieving higher drain current without mobility degradation and without reducing the gate oxide thickness, compared to paraelectric HfO2.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于 CMOS 逻辑电路的高掺 K-HfO₂ 沟道迁移率
在先进的 CMOS 技术中,为进一步降低等效氧化物厚度(EOT),场效应晶体管(FET)中集成了更高介电常数(更高 k 值)的栅极氧化物,如掺杂二氧化铪(HfO2)。然而,MOSFET 中的栅极氧化物应仔细选择,考虑到反转载流子表面密度(${N}_{text {s}, \text {inv}}$)和沟道迁移率($\mu _{\text {ch}}$)的提高,而这在掺杂二氧化铪中一直是一个较少关注的问题。我们通过门控霍尔测量法研究了高k n/p 沟道场效应晶体管(n/pFET)中的 $\mu _{\text {ch}}$ 和 ${N}_\text {s}, \text {inv}}$。重要的是,$\mu _{\text {ch}}$不会因高k掺杂HfO2而退化,这与传统的高k栅极氧化物集成不同。这一发现表明,与掺电 HfO2 相比,使用掺高 k 的 HfO2 作为栅极氧化物有望在不降低迁移率和不减少栅极氧化物厚度的情况下获得更高的漏极电流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Electron Devices
IEEE Transactions on Electron Devices 工程技术-工程:电子与电气
CiteScore
5.80
自引率
16.10%
发文量
937
审稿时长
3.8 months
期刊介绍: IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.
期刊最新文献
Table of Contents Special Issue on Intelligent Sensor Systems for the IEEE Journal of Electron Devices Corrections to “Electron Emission Regimes of Planar Nano Vacuum Emitters” IEEE Open Access Publishing IEEE ELECTRON DEVICES SOCIETY
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1