A novel daily runoff forecasting model based on global features and enhanced local feature interpretation

IF 5.9 1区 地球科学 Q1 ENGINEERING, CIVIL Journal of Hydrology Pub Date : 2024-10-22 DOI:10.1016/j.jhydrol.2024.132227
Dong-mei Xu , Yang-hao Hong , Wen-chuan Wang , Zong Li, Jun Wang
{"title":"A novel daily runoff forecasting model based on global features and enhanced local feature interpretation","authors":"Dong-mei Xu ,&nbsp;Yang-hao Hong ,&nbsp;Wen-chuan Wang ,&nbsp;Zong Li,&nbsp;Jun Wang","doi":"10.1016/j.jhydrol.2024.132227","DOIUrl":null,"url":null,"abstract":"<div><div>The development of artificial intelligence has introduced new perspectives to the field of hydrological forecasting. However, there is still a lack of research on efficiently identifying the physical characteristics of runoff sequences and developing prediction models that consider global and local sequence features. This study proposes a parallel computing prediction model called IMCAEN (Integrated Multi-Feature Causal Dilated Convolutional Attention Encoder Network) to address these issues. Unlike existing models, this model can monitor fluctuations and anomalies in time series. Incorporating the CDC-AA (Causal Dilated Convolutional Network with Aggregation Attention) and encoder structure captures both local sequence variations and global abrupt anomalies, allowing for comprehensive attention to sequence features. When predicting runoff data from three different hydrological conditions, the IMCAEN model achieved NSEC (Nash-Sutcliffe Efficiency Coefficient) values of 0.98, 0.97, and 0.88, respectively, and outperformed benchmark models in other evaluation indicators as well. Given the opacity of the feature distribution process in AI models, SHAP (SHapleyAdditive exPlanations) analysis and spatial expression of feature distribution are used to assess the contribution of each feature variable to the long-term trend of runoff and to verify the distribution of features trained in each module. The proposed IMCAEN model efficiently captures local and global information in the runoff evolution process through parallel computing and shared features, enabling accurate runoff forecasting and providing critical references for timely warnings and predictions.</div></div>","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":"645 ","pages":"Article 132227"},"PeriodicalIF":5.9000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022169424016238","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

The development of artificial intelligence has introduced new perspectives to the field of hydrological forecasting. However, there is still a lack of research on efficiently identifying the physical characteristics of runoff sequences and developing prediction models that consider global and local sequence features. This study proposes a parallel computing prediction model called IMCAEN (Integrated Multi-Feature Causal Dilated Convolutional Attention Encoder Network) to address these issues. Unlike existing models, this model can monitor fluctuations and anomalies in time series. Incorporating the CDC-AA (Causal Dilated Convolutional Network with Aggregation Attention) and encoder structure captures both local sequence variations and global abrupt anomalies, allowing for comprehensive attention to sequence features. When predicting runoff data from three different hydrological conditions, the IMCAEN model achieved NSEC (Nash-Sutcliffe Efficiency Coefficient) values of 0.98, 0.97, and 0.88, respectively, and outperformed benchmark models in other evaluation indicators as well. Given the opacity of the feature distribution process in AI models, SHAP (SHapleyAdditive exPlanations) analysis and spatial expression of feature distribution are used to assess the contribution of each feature variable to the long-term trend of runoff and to verify the distribution of features trained in each module. The proposed IMCAEN model efficiently captures local and global information in the runoff evolution process through parallel computing and shared features, enabling accurate runoff forecasting and providing critical references for timely warnings and predictions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于全局特征和强化局部特征解释的新型日径流预报模型
人工智能的发展为水文预测领域引入了新的视角。然而,在有效识别径流序列的物理特征以及开发考虑全局和局部序列特征的预测模型方面,仍然缺乏研究。本研究提出了一种名为 IMCAEN(集成多特征因果延迟卷积注意力编码器网络)的并行计算预测模型来解决这些问题。与现有模型不同,该模型可以监测时间序列中的波动和异常。将 CDC-AA(具有聚集注意力的因果稀释卷积网络)和编码器结构结合在一起,既能捕捉局部序列变化,也能捕捉全局突变异常,从而实现对序列特征的全面关注。在预测三种不同水文条件下的径流数据时,IMCAEN 模型的 NSEC(纳什-苏特克利夫效率系数)值分别为 0.98、0.97 和 0.88,在其他评价指标上也优于基准模型。考虑到人工智能模型中特征分布过程的不透明性,采用 SHAP(SHapleyAdditive exPlanations)分析和特征分布的空间表达来评估各特征变量对径流长期趋势的贡献,并验证各模块中训练的特征分布。所提出的 IMCAEN 模型通过并行计算和共享特征,有效捕捉了径流演变过程中的局部和全局信息,实现了准确的径流预报,为及时预警和预测提供了重要参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Hydrology
Journal of Hydrology 地学-地球科学综合
CiteScore
11.00
自引率
12.50%
发文量
1309
审稿时长
7.5 months
期刊介绍: The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.
期刊最新文献
Assessing the efficacy of Permeable Interlocking Concrete Pavers (PICP) in managing stormwater runoff under climate change and land use scenarios Groundwater flow and salinity dynamics in swash Zones: Combined effects of Evaporation, Waves, and geologic heterogeneity Disentangling the contributions of water vapor, albedo and evapotranspiration variations to the temperature effect of vegetation greening over the Arctic The role of mobile-immobile sorbents on flow and colloid-facilitated contaminant transport through porous media: Two-dimensional modeling A Multi-Objective Simulation-Optimization framework for water resources management in canal-well conjunctive irrigation area based on nexus perspective
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1