{"title":"How realistic are multi-decadal reconstructions of GRACE-like total water storage anomalies?","authors":"Charlotte Hacker, Jürgen Kusche","doi":"10.1016/j.jhydrol.2024.132180","DOIUrl":null,"url":null,"abstract":"<div><div>Reconstructions allow us to extend the Gravity Recovery And Climate Experiment (GRACE) data record into the past and bridge the one-year gap between GRACE and its successor, GRACE-FO (Follow on). Reconstructed total water storage anomalies (TWSA) are obtained by identifying relations between GRACE-derived TWSA and climate variables via statistical and machine learning techniques. However, a comparative analysis of the characteristics and realism of reconstructions is missing.</div><div>In this contribution, we close this gap by comparing three global reconstructions by Humphrey and Gudmundsson (2019), Li et al. (2021) and Chandanpurkar et al. (2022) mutually and against output from the Water Global Analysis and Prognosis (WaterGAP) hydrological model from 1979 onwards, against large-scale mass-change derived from geodetic satellite laser ranging (SLR) from 1992 onwards, and finally against differing GRACE and GRACE-FO solutions from 2002 onwards. The reconstructions vary regarding design and trained GRACE solution.</div><div>Reconstructions recover the TWSA signal for humid climate regions but disagree for arid climate regions, which is evident on the inter-annual timescales. At seasonal and sub-seasonal timescales, the reconstructions agree surprisingly well in many regions. Our comparison against independent SLR data reveals that reconstructions (only) partially succeed in representing anomalous TWSA for areas that are influenced by significant climate modes such as El Niño-Southern Oscillation (ENSO).</div></div>","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":"645 ","pages":"Article 132180"},"PeriodicalIF":5.9000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022169424015762","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Reconstructions allow us to extend the Gravity Recovery And Climate Experiment (GRACE) data record into the past and bridge the one-year gap between GRACE and its successor, GRACE-FO (Follow on). Reconstructed total water storage anomalies (TWSA) are obtained by identifying relations between GRACE-derived TWSA and climate variables via statistical and machine learning techniques. However, a comparative analysis of the characteristics and realism of reconstructions is missing.
In this contribution, we close this gap by comparing three global reconstructions by Humphrey and Gudmundsson (2019), Li et al. (2021) and Chandanpurkar et al. (2022) mutually and against output from the Water Global Analysis and Prognosis (WaterGAP) hydrological model from 1979 onwards, against large-scale mass-change derived from geodetic satellite laser ranging (SLR) from 1992 onwards, and finally against differing GRACE and GRACE-FO solutions from 2002 onwards. The reconstructions vary regarding design and trained GRACE solution.
Reconstructions recover the TWSA signal for humid climate regions but disagree for arid climate regions, which is evident on the inter-annual timescales. At seasonal and sub-seasonal timescales, the reconstructions agree surprisingly well in many regions. Our comparison against independent SLR data reveals that reconstructions (only) partially succeed in representing anomalous TWSA for areas that are influenced by significant climate modes such as El Niño-Southern Oscillation (ENSO).
期刊介绍:
The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.