{"title":"Ferroelectric Polarization Enhanced Optoelectronic Synaptic Response of a CuInP2S6 Transistor Structure","authors":"Zixuan Shang, Lingchen Liu, Guangcheng Wang, Hao Xu, Yuanyuan Cui, Jianming Deng, Zheng Lou, Yinzhou Yan, Jinxiang Deng, Su-Ting Han, Tianrui Zhai*, Xueyun Wang*, Lili Wang* and Xiaolei Wang*, ","doi":"10.1021/acsnano.4c0881010.1021/acsnano.4c08810","DOIUrl":null,"url":null,"abstract":"<p >Neuromorphic computing can simulate brain function and is a pivotal element in next-generation computing, providing a potential solution to the limitations brought by the von Neumann bottleneck. Optoelectronic synaptic devices are highly promising tools for simulating biomimetic nervous systems. In this study, we developed an optoelectronic neuromorphic device with a transistor structure constructed using ferroelectric CuInP<sub>2</sub>S<sub>6</sub>. Essential synaptic behaviors in this device are observed in response to light and electrical stimuli. The optoferroelectric coupling is revealed, and the highly tunable gate modulation of the charge carrier is realized in a single device. On this basis, the light adaptation of the biological eyes and smarter Pavlovian dogs was implemented successfully and enhanced by ferroelectric polarization. The gate voltage application promotes the migration of additional Cu<sup>+</sup> ions in the in-plane direction, thus enhancing the synaptic performance of electrical stimulation. Meanwhile, the processing ability of convolutional kernel noise images in ferroelectric devices has been achieved. Our results offer the important observation and application of ferroelectric polarization-enhanced synaptic properties of a transistor structure and have great potential in promoting the development of two-dimensional van der Waals materials and devices.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"18 44","pages":"30530–30539 30530–30539"},"PeriodicalIF":15.8000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c08810","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Neuromorphic computing can simulate brain function and is a pivotal element in next-generation computing, providing a potential solution to the limitations brought by the von Neumann bottleneck. Optoelectronic synaptic devices are highly promising tools for simulating biomimetic nervous systems. In this study, we developed an optoelectronic neuromorphic device with a transistor structure constructed using ferroelectric CuInP2S6. Essential synaptic behaviors in this device are observed in response to light and electrical stimuli. The optoferroelectric coupling is revealed, and the highly tunable gate modulation of the charge carrier is realized in a single device. On this basis, the light adaptation of the biological eyes and smarter Pavlovian dogs was implemented successfully and enhanced by ferroelectric polarization. The gate voltage application promotes the migration of additional Cu+ ions in the in-plane direction, thus enhancing the synaptic performance of electrical stimulation. Meanwhile, the processing ability of convolutional kernel noise images in ferroelectric devices has been achieved. Our results offer the important observation and application of ferroelectric polarization-enhanced synaptic properties of a transistor structure and have great potential in promoting the development of two-dimensional van der Waals materials and devices.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.