Realizing Dual-Mode Zinc-Ion Storage of Generic Vanadium-Based Cathodes via Organic Molecule Intercalation

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2024-10-26 DOI:10.1021/acsnano.4c1284910.1021/acsnano.4c12849
Hongwei Tang, Kexin Wan, Kang Zhang, Ao Wang, Mingkun Wang, Juan Xie, Pengcheng Su, Huilong Dong*, Jingyu Sun* and Yihui Li*, 
{"title":"Realizing Dual-Mode Zinc-Ion Storage of Generic Vanadium-Based Cathodes via Organic Molecule Intercalation","authors":"Hongwei Tang,&nbsp;Kexin Wan,&nbsp;Kang Zhang,&nbsp;Ao Wang,&nbsp;Mingkun Wang,&nbsp;Juan Xie,&nbsp;Pengcheng Su,&nbsp;Huilong Dong*,&nbsp;Jingyu Sun* and Yihui Li*,&nbsp;","doi":"10.1021/acsnano.4c1284910.1021/acsnano.4c12849","DOIUrl":null,"url":null,"abstract":"<p >Intercalation engineering is a promising strategy to promote zinc-ion storage of layered cathodes; however, is impeded by the complex fabrication routes and inert electrochemical behaviors of intercalators. Herein, an organic imidazole intercalation strategy is proposed, where V<sub>2</sub>O<sub>5</sub> and NH<sub>4</sub>V<sub>3</sub>O<sub>8</sub> (NVO) model materials are adopted to verify the feasibility of the imidazole intercalator in improving the zinc storage capabilities of vanadium-based cathodes. The intercalated imidazole molecules could not only expand interlayer spacing and strengthen structural stability by serving as extra “pillars” but also provide extra coordination sites for zinc storage via the coordination reaction between Zn<sup>2+</sup> and the C═N group. This gives rise to a dual-mode ion storage mechanism and favorable electrochemical performances. As a result, imidazole-intercalated V<sub>2</sub>O<sub>5</sub> delivers a capacity of 179.9 mAh g<sup>–1</sup> after 5000 cycles at 20 A g<sup>–1</sup>, while the imidazole-intercalated NVO harvests a high capacity output of 170.2 mAh g<sup>–1</sup> after 700 cycles at 2 A g<sup>–1</sup>. This work is anticipated to boost the application potentials of vanadium-based cathodes in aqueous zinc-ion batteries.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"18 44","pages":"30896–30909 30896–30909"},"PeriodicalIF":15.8000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c12849","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Intercalation engineering is a promising strategy to promote zinc-ion storage of layered cathodes; however, is impeded by the complex fabrication routes and inert electrochemical behaviors of intercalators. Herein, an organic imidazole intercalation strategy is proposed, where V2O5 and NH4V3O8 (NVO) model materials are adopted to verify the feasibility of the imidazole intercalator in improving the zinc storage capabilities of vanadium-based cathodes. The intercalated imidazole molecules could not only expand interlayer spacing and strengthen structural stability by serving as extra “pillars” but also provide extra coordination sites for zinc storage via the coordination reaction between Zn2+ and the C═N group. This gives rise to a dual-mode ion storage mechanism and favorable electrochemical performances. As a result, imidazole-intercalated V2O5 delivers a capacity of 179.9 mAh g–1 after 5000 cycles at 20 A g–1, while the imidazole-intercalated NVO harvests a high capacity output of 170.2 mAh g–1 after 700 cycles at 2 A g–1. This work is anticipated to boost the application potentials of vanadium-based cathodes in aqueous zinc-ion batteries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过有机分子互嵌实现通用钒基阴极的锌离子双模式存储
插层工程是促进层状阴极锌离子存储的一种前景广阔的策略;然而,由于复杂的制造路线和插层剂的惰性电化学行为,这一策略受到了阻碍。本文提出了一种有机咪唑插层策略,采用 V2O5 和 NH4V3O8(NVO)模型材料来验证咪唑插层剂在提高钒基阴极锌存储能力方面的可行性。插层的咪唑分子不仅可以作为额外的 "支柱 "扩大层间间距并增强结构稳定性,还可以通过 Zn2+ 与 C═N 基团之间的配位反应为锌储存提供额外的配位位点。这就产生了一种双模式离子存储机制和良好的电化学性能。因此,在 20 A g-1 的条件下循环 5000 次后,咪唑夹杂的 V2O5 可输出 179.9 mAh g-1 的容量;而在 2 A g-1 的条件下循环 700 次后,咪唑夹杂的 NVO 可输出 170.2 mAh g-1 的高容量。这项工作有望提高钒基阴极在锌离子水电池中的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
In Situ Phase Transformation-Enabled Metal–Organic Frameworks for Efficient CO2 Electroreduction to Multicarbon Products in Strong Acidic Media Voltage-Gated Switching of Moiré Patterns in Epitaxial Molecular Crystals Correction to “Sequential Treatment of Bioresponsive Nanoparticles Elicits Antiangiogenesis and Apoptosis and Synergizes with a CD40 Agonist for Antitumor Immunity” Targeting Metastasis in Head and Neck Squamous Cell Carcinoma Using Follistatin mRNA Lipid Nanoparticles Photocatalytic Achmatowicz Rearrangement on Triphenylbenzene–Dimethoxyterephthaldehyde–Covalent Organic Framework-Mo for Converting Biomass-Derived Furfuryl Alcohol to Hydropyranone
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1