Alexandre Dazzi*, Jeremie Mathurin, Philippe Leclere, Pierre Nickmilder, Peter De Wolf, Martin Wagner, Qichi Hu and Ariane Deniset-Besseau,
{"title":"Photothermal AFM-IR Depth Sensitivity: An Original Pathway to Tomographic Reconstruction","authors":"Alexandre Dazzi*, Jeremie Mathurin, Philippe Leclere, Pierre Nickmilder, Peter De Wolf, Martin Wagner, Qichi Hu and Ariane Deniset-Besseau, ","doi":"10.1021/acs.analchem.4c0196910.1021/acs.analchem.4c01969","DOIUrl":null,"url":null,"abstract":"<p >Photothermal atomic force microscopy-infrared (AFM-IR) enables label-free chemical imaging and spectroscopy with nanometer-scale spatial resolution through the integration of atomic force microscopy (AFM) and infrared radiation. The capability for subsurface and three-dimensional (3D) tomographic material analysis remains, however, largely unexplored. Here, we establish a simple and robust empirical relationship between the probing depth and laser repetition rate for three important modes of AFM-IR operation: resonance-enhanced, tapping, and surface-sensitive AFM-IR. Using this empirical relationship, we demonstrate, based on the example of resonance-enhanced operation, how photothermal AFM-IR of thin surface/subsurface layers of polystyrene domains in the poly(methyl methacrylate) matrix can result in 3D representations revealing the size and thickness of small polystyrene domains in the poly(methyl methacrylate) matrix with nanometer-scale resolution. Experimental findings are confirmed by analytical models.</p>","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"96 45","pages":"17931–17940 17931–17940"},"PeriodicalIF":6.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.analchem.4c01969","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Photothermal atomic force microscopy-infrared (AFM-IR) enables label-free chemical imaging and spectroscopy with nanometer-scale spatial resolution through the integration of atomic force microscopy (AFM) and infrared radiation. The capability for subsurface and three-dimensional (3D) tomographic material analysis remains, however, largely unexplored. Here, we establish a simple and robust empirical relationship between the probing depth and laser repetition rate for three important modes of AFM-IR operation: resonance-enhanced, tapping, and surface-sensitive AFM-IR. Using this empirical relationship, we demonstrate, based on the example of resonance-enhanced operation, how photothermal AFM-IR of thin surface/subsurface layers of polystyrene domains in the poly(methyl methacrylate) matrix can result in 3D representations revealing the size and thickness of small polystyrene domains in the poly(methyl methacrylate) matrix with nanometer-scale resolution. Experimental findings are confirmed by analytical models.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.