Raman Spectroscopy Measurements Support Disorder-Driven Capacitance in Nanoporous Carbons

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2024-11-01 DOI:10.1021/jacs.4c1021410.1021/jacs.4c10214
Xinyu Liu, Jaehoon Choi, Zhen Xu, Clare P. Grey*, Simon Fleischmann* and Alexander C. Forse*, 
{"title":"Raman Spectroscopy Measurements Support Disorder-Driven Capacitance in Nanoporous Carbons","authors":"Xinyu Liu,&nbsp;Jaehoon Choi,&nbsp;Zhen Xu,&nbsp;Clare P. Grey*,&nbsp;Simon Fleischmann* and Alexander C. Forse*,&nbsp;","doi":"10.1021/jacs.4c1021410.1021/jacs.4c10214","DOIUrl":null,"url":null,"abstract":"<p >Our recent study of 20 nanoporous activated carbons showed that a more disordered local carbon structure leads to enhanced capacitive performance in electrochemical double layer capacitors. Specifically, NMR spectroscopy measurements and simulations of electrolyte-soaked carbons evidenced that nanoporous carbons with smaller graphene-like domains have larger capacitances. In this study, we use Raman spectroscopy, a common probe of local structural disorder in nanoporous carbons, to test the disorder-driven capacitance theory. It is found that nanoporous carbons with broader D bands and smaller I<sub>D</sub>/I<sub>G</sub> intensity ratios exhibit higher capacitance. Most notably, the I<sub>D</sub>/I<sub>G</sub> intensity ratio probes the in-plane sizes of graphene-like domains and supports the findings from NMR that smaller graphene-like domains correlate with larger capacitances. This study supports our finding that disorder is a key metric for high capacitance in nanoporous carbons and shows that Raman spectroscopy is a powerful technique that allows rapid screening to identify nanoporous carbons with superior performance in supercapacitors.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"146 45","pages":"30748–30752 30748–30752"},"PeriodicalIF":14.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacs.4c10214","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.4c10214","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Our recent study of 20 nanoporous activated carbons showed that a more disordered local carbon structure leads to enhanced capacitive performance in electrochemical double layer capacitors. Specifically, NMR spectroscopy measurements and simulations of electrolyte-soaked carbons evidenced that nanoporous carbons with smaller graphene-like domains have larger capacitances. In this study, we use Raman spectroscopy, a common probe of local structural disorder in nanoporous carbons, to test the disorder-driven capacitance theory. It is found that nanoporous carbons with broader D bands and smaller ID/IG intensity ratios exhibit higher capacitance. Most notably, the ID/IG intensity ratio probes the in-plane sizes of graphene-like domains and supports the findings from NMR that smaller graphene-like domains correlate with larger capacitances. This study supports our finding that disorder is a key metric for high capacitance in nanoporous carbons and shows that Raman spectroscopy is a powerful technique that allows rapid screening to identify nanoporous carbons with superior performance in supercapacitors.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
拉曼光谱测量支持纳米多孔碳中的无序电容
我们最近对 20 种纳米多孔活性碳进行的研究表明,更无序的局部碳结构可提高电化学双层电容器的电容性能。具体来说,核磁共振光谱测量和电解液浸泡碳的模拟证明,具有较小石墨烯状结构域的纳米多孔碳具有较大的电容。在本研究中,我们使用拉曼光谱这种纳米多孔碳中局部结构无序的常见探针来检验无序驱动电容理论。研究发现,D 波段更宽且 ID/IG 强度比更小的纳米多孔碳具有更高的电容。最值得注意的是,ID/IG 强度比可探测类石墨烯结构域的面内尺寸,并支持核磁共振的发现,即较小的类石墨烯结构域与较大的电容相关。这项研究支持了我们的发现,即无序是纳米多孔碳中高电容的一个关键指标,并表明拉曼光谱是一种强大的技术,可以快速筛选出在超级电容器中具有卓越性能的纳米多孔碳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Oxygen Vacancy Boosts Nitrogen-Centered Radical Coupling Initiated by Primary Amine Electrooxidation Synthesis of Multisubstituted Cyclopentadiene Derivatives from 3,3-Disubstituted Cyclopropenes and Internal Alkynes Catalyzed by Low-Valent Niobium Complexes Molecular Design of Phthalocyanine-Based Drug Coassembly with Tailored Function Generative Pretrained Transformer for Heterogeneous Catalysts Plateau–Rayleigh Instability in Soft-Lattice Inorganic Solids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1