Li Fu, Pengjie Dong, Zerui Liu, Qi Li and Yingshu Guo*,
{"title":"Unary Au Nanocrystal with Prestored Electrons and Intrinsic Low Hole-Injected Potential for Low-Triggering Potential Electrochemiluminescence","authors":"Li Fu, Pengjie Dong, Zerui Liu, Qi Li and Yingshu Guo*, ","doi":"10.1021/acs.analchem.4c0459410.1021/acs.analchem.4c04594","DOIUrl":null,"url":null,"abstract":"<p >Screening a novel electrochemiluminescence (ECL) system and lowering the ECL triggering potential are essential to ECL evolution. Herein, the near-infrared (NIR) ECL system with low-triggering potential ECL was constructed with weakly reductive <i>tert</i>-butylamine borane as coreactant and mercaptosuccinic acid/citrate (MSA/Cit)-capped Au (MSA/Cit@AuNCs) as luminophores. Toxic-element-free and dual-ligand MSA/Cit@AuNCs were prepared via ligand exchange and utilized as a model for developing unary metal NCs-based luminophores with more enhanced ECL performance than monoligand Au nanocrystals (AuNCs), which exhibited a two hole-injected process at around 0.48 and 0.80 V, respectively. Beneficial to the intrinsic low hole-injected potential of AuNCs, MSA/Cit@AuNCs exhibited similar low-triggering ECL potential at around 0.57 V with the participation of series coreactants or not, originating from the recombination of an internal prestored electron within the conduction band (CB) and electroinjected holes at around 0.25 V. Furthermore, the enhanced low-triggering potential around 0.57 V and NIR ECL around 835 nm of MSA/Cit@AuNCs was eventually obtained with the reductive <i>tert</i>-butylamine borane or N<sub>2</sub>H<sub>4</sub>·H<sub>2</sub>O containing a −C–N single-bond structure merely as coreactant. The low-triggering potential ECL of MSA/Cit@AuNCs/<i>tert</i>-butylamine borane system at 0.57 V can be harnessed to selectively determine a carcinoembryonic antigen (CEA) with one linear range spanning from 2 to 20000 fg/mL and a limit of detection of 0.33 fg/mL (S/N = 3). This study will contribute to a more comprehensive understanding of the ECL mechanism in terms of both regulating NCs and selecting coreactants.</p>","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"96 45","pages":"18254–18261 18254–18261"},"PeriodicalIF":6.7000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.analchem.4c04594","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Screening a novel electrochemiluminescence (ECL) system and lowering the ECL triggering potential are essential to ECL evolution. Herein, the near-infrared (NIR) ECL system with low-triggering potential ECL was constructed with weakly reductive tert-butylamine borane as coreactant and mercaptosuccinic acid/citrate (MSA/Cit)-capped Au (MSA/Cit@AuNCs) as luminophores. Toxic-element-free and dual-ligand MSA/Cit@AuNCs were prepared via ligand exchange and utilized as a model for developing unary metal NCs-based luminophores with more enhanced ECL performance than monoligand Au nanocrystals (AuNCs), which exhibited a two hole-injected process at around 0.48 and 0.80 V, respectively. Beneficial to the intrinsic low hole-injected potential of AuNCs, MSA/Cit@AuNCs exhibited similar low-triggering ECL potential at around 0.57 V with the participation of series coreactants or not, originating from the recombination of an internal prestored electron within the conduction band (CB) and electroinjected holes at around 0.25 V. Furthermore, the enhanced low-triggering potential around 0.57 V and NIR ECL around 835 nm of MSA/Cit@AuNCs was eventually obtained with the reductive tert-butylamine borane or N2H4·H2O containing a −C–N single-bond structure merely as coreactant. The low-triggering potential ECL of MSA/Cit@AuNCs/tert-butylamine borane system at 0.57 V can be harnessed to selectively determine a carcinoembryonic antigen (CEA) with one linear range spanning from 2 to 20000 fg/mL and a limit of detection of 0.33 fg/mL (S/N = 3). This study will contribute to a more comprehensive understanding of the ECL mechanism in terms of both regulating NCs and selecting coreactants.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.