Samuel A Miller, Andrew R Forero, Lilian Valadares Tose, Jordan E Krechmer, Felician Muntean, Francisco Fernandez-Lima
{"title":"High-throughput screening of fentanyl analogs.","authors":"Samuel A Miller, Andrew R Forero, Lilian Valadares Tose, Jordan E Krechmer, Felician Muntean, Francisco Fernandez-Lima","doi":"10.1016/j.talanta.2024.127191","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents an analytical approach coupling novel ambient ionization sources with trapped ion mobility spectrometry (TIMS) and tandem mass spectrometry (MS/MS) for the rapid characterization of fentanyl analogs. Two ambient ionization sources were illustrated for minimal sample preparation and rapid analysis: electrospray ionization (nESI) and direct analysis in real time (DART). Fentanyl analogs can be separated using nESI-TIMS-MS/MS based on differences in their mobility and/or fragmentation pattern; reference mobility spectra are reported for 234 single standards. In contrast, DART-TIMS-MS/MS allowed for the characterization of 201 compounds due to differences in the protonation pattern and efficiency when compared to nESI. The TIMS high resolving power (R > 80) allowed baseline separation for most isomers and mobility trends were established for methylated and fluorinated isomers, with the more compact ortho-substituted analogs showing distinct separation from para- and meta-substituted species. This multi-dimensional strategy offers a comprehensive characterization of fentanyl analogs and other synthetic opioids with minimal sample preparation. This analysis shows significant potential for high-throughput screening (<5 min) and high sensitivity detection (<pg level) of emerging illicit drugs, supporting ongoing forensic investigations and public health initiatives. The use of alternative mobility calibration methods using internal/external standards with ambient ionization sources coupled to TIMS-MS is also provided, enhancing its robustness and applicability.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"283 ","pages":"127191"},"PeriodicalIF":5.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2024.127191","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents an analytical approach coupling novel ambient ionization sources with trapped ion mobility spectrometry (TIMS) and tandem mass spectrometry (MS/MS) for the rapid characterization of fentanyl analogs. Two ambient ionization sources were illustrated for minimal sample preparation and rapid analysis: electrospray ionization (nESI) and direct analysis in real time (DART). Fentanyl analogs can be separated using nESI-TIMS-MS/MS based on differences in their mobility and/or fragmentation pattern; reference mobility spectra are reported for 234 single standards. In contrast, DART-TIMS-MS/MS allowed for the characterization of 201 compounds due to differences in the protonation pattern and efficiency when compared to nESI. The TIMS high resolving power (R > 80) allowed baseline separation for most isomers and mobility trends were established for methylated and fluorinated isomers, with the more compact ortho-substituted analogs showing distinct separation from para- and meta-substituted species. This multi-dimensional strategy offers a comprehensive characterization of fentanyl analogs and other synthetic opioids with minimal sample preparation. This analysis shows significant potential for high-throughput screening (<5 min) and high sensitivity detection (
期刊介绍:
Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome.
Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.