Xinrui Yuan, Jason C. Rech, Andhavaram Ramaraju, Amol D. Patil, Krishani Rajanayake, Hebao Yuan, Mona Kazemi Sabzvar, Mousumi Mandal, Eun Bee Cho, Bo Wen, Jianxiong Jiang, M. Dennis Leo, Udai P. Singh, Duxin Sun and Chao-Yie Yang*,
{"title":"Studies of Structure–Activity Relationship of 2-(Pyrrolidin-1ylmethyl)-1H-pyrrole-Based ST2 Inhibitors and Their Inhibition of Mast Cells Activation","authors":"Xinrui Yuan, Jason C. Rech, Andhavaram Ramaraju, Amol D. Patil, Krishani Rajanayake, Hebao Yuan, Mona Kazemi Sabzvar, Mousumi Mandal, Eun Bee Cho, Bo Wen, Jianxiong Jiang, M. Dennis Leo, Udai P. Singh, Duxin Sun and Chao-Yie Yang*, ","doi":"10.1021/acsmedchemlett.4c0045910.1021/acsmedchemlett.4c00459","DOIUrl":null,"url":null,"abstract":"<p >ST2 belongs to the interleukin 1 receptor family and is expressed in immune cells including certain CD4<sup>+</sup> T cells and mast cells. Binding of ST2 with interleukin 33 (IL-33) induces downstream signaling that activates NF-κB pathway. Although the ST2/IL-33 axis exerts immune tolerance via expansion of regulator T cells, the same axis also activates a subset of immune cells to produce proinflammatory cytokines in host defense or in tissue repair. Here, we reported the development of ST2 inhibitors with improved inhibitory activities against ST2 and metabolic stability based on a previous lead, <b>iST2-14e</b>. Using the human mast cell line (LAD2), we showed that ST2 inhibitors mitigated ST2 upregulation and reduced IL-1β released through degranulation, demonstrating that small-molecule ST2 inhibitors effectively attenuated the ST2/IL-33 signaling in human mast cells. Further optimization of the compounds may lay the foundation for developing ST2 inhibitors for the treatment of mast cells mediated diseases.</p>","PeriodicalId":20,"journal":{"name":"ACS Medicinal Chemistry Letters","volume":"15 11","pages":"2053–2059 2053–2059"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Medicinal Chemistry Letters","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmedchemlett.4c00459","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
ST2 belongs to the interleukin 1 receptor family and is expressed in immune cells including certain CD4+ T cells and mast cells. Binding of ST2 with interleukin 33 (IL-33) induces downstream signaling that activates NF-κB pathway. Although the ST2/IL-33 axis exerts immune tolerance via expansion of regulator T cells, the same axis also activates a subset of immune cells to produce proinflammatory cytokines in host defense or in tissue repair. Here, we reported the development of ST2 inhibitors with improved inhibitory activities against ST2 and metabolic stability based on a previous lead, iST2-14e. Using the human mast cell line (LAD2), we showed that ST2 inhibitors mitigated ST2 upregulation and reduced IL-1β released through degranulation, demonstrating that small-molecule ST2 inhibitors effectively attenuated the ST2/IL-33 signaling in human mast cells. Further optimization of the compounds may lay the foundation for developing ST2 inhibitors for the treatment of mast cells mediated diseases.
期刊介绍:
ACS Medicinal Chemistry Letters is interested in receiving manuscripts that discuss various aspects of medicinal chemistry. The journal will publish studies that pertain to a broad range of subject matter, including compound design and optimization, biological evaluation, drug delivery, imaging agents, and pharmacology of both small and large bioactive molecules. Specific areas include but are not limited to:
Identification, synthesis, and optimization of lead biologically active molecules and drugs (small molecules and biologics)
Biological characterization of new molecular entities in the context of drug discovery
Computational, cheminformatics, and structural studies for the identification or SAR analysis of bioactive molecules, ligands and their targets, etc.
Novel and improved methodologies, including radiation biochemistry, with broad application to medicinal chemistry
Discovery technologies for biologically active molecules from both synthetic and natural (plant and other) sources
Pharmacokinetic/pharmacodynamic studies that address mechanisms underlying drug disposition and response
Pharmacogenetic and pharmacogenomic studies used to enhance drug design and the translation of medicinal chemistry into the clinic
Mechanistic drug metabolism and regulation of metabolic enzyme gene expression
Chemistry patents relevant to the medicinal chemistry field.