Optimized chemical labeling method for isolation of 8-oxoG-modified RNA, ChLoRox-Seq, identifies mRNAs enriched in oxidation and transcriptome-wide distribution biases of oxidation events post environmental stress.
Matthew R Burroughs, Philip J Sweet, Lydia M Contreras
{"title":"Optimized chemical labeling method for isolation of 8-oxoG-modified RNA, ChLoRox-Seq, identifies mRNAs enriched in oxidation and transcriptome-wide distribution biases of oxidation events post environmental stress.","authors":"Matthew R Burroughs, Philip J Sweet, Lydia M Contreras","doi":"10.1080/15476286.2024.2427903","DOIUrl":null,"url":null,"abstract":"<p><p>Bulk increases in nucleobase oxidation, most commonly manifesting as the guanine (G) nucleobase modification 8-oxo-7,8-dihydroguanine (8-oxoG), have been linked to several disease pathologies. Elucidating the effects of RNA oxidation on cellular homoeostasis is limited by a lack of effective tools for detecting specific regions modified with 8-oxoG. Building on a previously published method for studying 8-oxoG in DNA, we developed ChLoRox-Seq, which works by covalently functionalizing 8-oxoG sites in RNA with biotin. Importantly, this method enables antibody-free enrichment of 8-oxoG-containing RNA fragments for Next Generation Sequencing-based detection of modified regions transcriptome-wide. We demonstrate the high specificity of ChLoRox-Seq for functionalizing 8-oxoG over unmodified nucleobases in RNA and benchmark this specificity to a commonly used antibody-based approach. Key advantages of ChLoRox-Seq include: (1) heightened resolution of RNA oxidation regions (e.g. exon-level) and (2) lower experimental costs. By applying ChLoRox-Seq to mRNA extracted from human lung epithelial cells (BEAS-2B) after exposure to environmentally relevant stress, we observe that 8-oxoG modifications tend to cluster in regions that are G-rich and within mRNA transcripts possessing longer 5' UTR and CDS regions. These findings provide new insight into the complex mechanisms that bias the accumulation of RNA oxidation across the transcriptome. Notably, our analysis suggests the possibility that most mRNA oxidation events are probabilistically driven and that mRNAs that possess more favourable intrinsic properties are prone to incur oxidation events at elevated rates. ChLoRox-Seq can be readily applied in future studies to identify regions of elevated RNA oxidation in any cellular model of interest.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"21 1","pages":"132-148"},"PeriodicalIF":3.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11581162/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RNA Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15476286.2024.2427903","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bulk increases in nucleobase oxidation, most commonly manifesting as the guanine (G) nucleobase modification 8-oxo-7,8-dihydroguanine (8-oxoG), have been linked to several disease pathologies. Elucidating the effects of RNA oxidation on cellular homoeostasis is limited by a lack of effective tools for detecting specific regions modified with 8-oxoG. Building on a previously published method for studying 8-oxoG in DNA, we developed ChLoRox-Seq, which works by covalently functionalizing 8-oxoG sites in RNA with biotin. Importantly, this method enables antibody-free enrichment of 8-oxoG-containing RNA fragments for Next Generation Sequencing-based detection of modified regions transcriptome-wide. We demonstrate the high specificity of ChLoRox-Seq for functionalizing 8-oxoG over unmodified nucleobases in RNA and benchmark this specificity to a commonly used antibody-based approach. Key advantages of ChLoRox-Seq include: (1) heightened resolution of RNA oxidation regions (e.g. exon-level) and (2) lower experimental costs. By applying ChLoRox-Seq to mRNA extracted from human lung epithelial cells (BEAS-2B) after exposure to environmentally relevant stress, we observe that 8-oxoG modifications tend to cluster in regions that are G-rich and within mRNA transcripts possessing longer 5' UTR and CDS regions. These findings provide new insight into the complex mechanisms that bias the accumulation of RNA oxidation across the transcriptome. Notably, our analysis suggests the possibility that most mRNA oxidation events are probabilistically driven and that mRNAs that possess more favourable intrinsic properties are prone to incur oxidation events at elevated rates. ChLoRox-Seq can be readily applied in future studies to identify regions of elevated RNA oxidation in any cellular model of interest.
期刊介绍:
RNA has played a central role in all cellular processes since the beginning of life: decoding the genome, regulating gene expression, mediating molecular interactions, catalyzing chemical reactions. RNA Biology, as a leading journal in the field, provides a platform for presenting and discussing cutting-edge RNA research.
RNA Biology brings together a multidisciplinary community of scientists working in the areas of:
Transcription and splicing
Post-transcriptional regulation of gene expression
Non-coding RNAs
RNA localization
Translation and catalysis by RNA
Structural biology
Bioinformatics
RNA in disease and therapy