Effect of Thermal Stress on Morphology in High-Performance Organic Photovoltaic Blends

IF 8.5 Q1 CHEMISTRY, MULTIDISCIPLINARY JACS Au Pub Date : 2024-10-10 DOI:10.1021/jacsau.4c0063110.1021/jacsau.4c00631
Haoyu Zhao, Nathaniel Prine, Soumya Kundu, Guorong Ma and Xiaodan Gu*, 
{"title":"Effect of Thermal Stress on Morphology in High-Performance Organic Photovoltaic Blends","authors":"Haoyu Zhao,&nbsp;Nathaniel Prine,&nbsp;Soumya Kundu,&nbsp;Guorong Ma and Xiaodan Gu*,&nbsp;","doi":"10.1021/jacsau.4c0063110.1021/jacsau.4c00631","DOIUrl":null,"url":null,"abstract":"<p >Thermal stress is a critical factor causing long-term instability in bulk heterojunction (BHJ) layers of organic photovoltaic (OPV) devices. This study provides direct insights into the thermal properties of Y6, PM6, and their binary blends by employing fast differential scanning calorimetry (flash DSC) to analyze their chain dynamics. The glass transition temperatures (<i>T</i><sub>g</sub>) of Y6 and PM6 were measured, with Y6 exhibiting a <i>T</i><sub>g</sub> of 175.2 °C and PM6 showing two <i>T</i><sub>g</sub>s at 39.7 and 107.6 °C. Our findings indicate that average OPVs’ operational temperatures are lower than the blend’s primary <i>T</i><sub>g</sub> of 138.2 °C. Thus, the mobility of PM6 and Y6 is not the critical factor that results in drastic drifts in the device morphology. Instead, we discovered that the crystallization of small molecules Y6 in the BHJ film at elevated operation temperatures <i>significantly contributes</i> to the morphological instability of the BHJ layer, based on a flash DSC isotherm crystallization study. The crystallization of the acceptor leads to severe phase separation between donors and acceptors and results in device failure. The acceptor Y6’s crystallization rate also increased when blended with donor PM6, compared to that of pure Y6 molecules. Furthermore, AFM–IR analysis of the morphology of the BHJ layer after high thermal stress of 200 °C revealed an apparent demixing of donor PM6 and acceptor Y6, revealing Y6 globules about 200 nm in diameter, with PM6 domains surrounding the Y6 regions. This crystallization-induced morphology change was later confirmed to correlate well with the device performance drop. This study offers valuable insights into the origin of BHJ layer instability in OPV devices containing nonfullerene small molecule acceptors and polymer donors. Additionally, it emphasizes the importance of addressing thermal stress to enhance the performance and durability of such devices and informs strategies for developing more stable organic solar cells.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"4 11","pages":"4334–4344 4334–4344"},"PeriodicalIF":8.5000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.4c00631","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacsau.4c00631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Thermal stress is a critical factor causing long-term instability in bulk heterojunction (BHJ) layers of organic photovoltaic (OPV) devices. This study provides direct insights into the thermal properties of Y6, PM6, and their binary blends by employing fast differential scanning calorimetry (flash DSC) to analyze their chain dynamics. The glass transition temperatures (Tg) of Y6 and PM6 were measured, with Y6 exhibiting a Tg of 175.2 °C and PM6 showing two Tgs at 39.7 and 107.6 °C. Our findings indicate that average OPVs’ operational temperatures are lower than the blend’s primary Tg of 138.2 °C. Thus, the mobility of PM6 and Y6 is not the critical factor that results in drastic drifts in the device morphology. Instead, we discovered that the crystallization of small molecules Y6 in the BHJ film at elevated operation temperatures significantly contributes to the morphological instability of the BHJ layer, based on a flash DSC isotherm crystallization study. The crystallization of the acceptor leads to severe phase separation between donors and acceptors and results in device failure. The acceptor Y6’s crystallization rate also increased when blended with donor PM6, compared to that of pure Y6 molecules. Furthermore, AFM–IR analysis of the morphology of the BHJ layer after high thermal stress of 200 °C revealed an apparent demixing of donor PM6 and acceptor Y6, revealing Y6 globules about 200 nm in diameter, with PM6 domains surrounding the Y6 regions. This crystallization-induced morphology change was later confirmed to correlate well with the device performance drop. This study offers valuable insights into the origin of BHJ layer instability in OPV devices containing nonfullerene small molecule acceptors and polymer donors. Additionally, it emphasizes the importance of addressing thermal stress to enhance the performance and durability of such devices and informs strategies for developing more stable organic solar cells.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热应力对高性能有机光伏混合物形态的影响
热应力是导致有机光伏(OPV)器件的体异质结(BHJ)层长期不稳定的关键因素。本研究采用快速差示扫描量热法(flash DSC)分析 Y6、PM6 及其二元共混物的链动力学,从而直接了解它们的热特性。测量了 Y6 和 PM6 的玻璃化转变温度 (Tg),Y6 的 Tg 为 175.2 ℃,PM6 的两个 Tg 分别为 39.7 ℃ 和 107.6 ℃。我们的研究结果表明,OPV 的平均工作温度低于混合物的主要 Tg(138.2 °C)。因此,PM6 和 Y6 的迁移率并不是导致器件形态急剧变化的关键因素。相反,根据闪速 DSC 等温线结晶研究,我们发现小分子 Y6 在 BHJ 膜中的结晶在较高的工作温度下极大地加剧了 BHJ 层的形态不稳定性。受体的结晶会导致供体和受体之间出现严重的相分离,从而导致器件失效。与纯 Y6 分子相比,受体 Y6 与供体 PM6 混合后的结晶速率也有所增加。此外,在 200 °C 的高热应力下对 BHJ 层的形貌进行原子力显微镜-红外分析后发现,供体 PM6 和受体 Y6 发生了明显的脱混,显示出直径约 200 nm 的 Y6 球状,Y6 区域周围是 PM6 域。这种结晶引起的形态变化后来被证实与器件性能下降密切相关。这项研究为了解含有非富勒烯小分子受体和聚合物供体的 OPV 器件中 BHJ 层不稳定性的起源提供了宝贵的见解。此外,它还强调了解决热应力问题以提高此类器件的性能和耐用性的重要性,并为开发更稳定的有机太阳能电池提供了参考策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊最新文献
Issue Editorial Masthead Issue Publication Information Revealing the Ultrafast Energy Transfer Pathways in Energetic Materials: Time-Dependent and Quantum State-Resolved Mechanistic Insights into Nonadiabatic Interband Transitions on a Semiconductor Surface Induced by Hydrogen Atom Collisions Sequence-Encoded Spatiotemporal Dependence of Viscoelasticity of Protein Condensates Using Computational Microrheology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1