Enzymatic Routes to Designer Hemicelluloses for Use in Biobased Materials

IF 8.5 Q1 CHEMISTRY, MULTIDISCIPLINARY JACS Au Pub Date : 2024-10-08 DOI:10.1021/jacsau.4c0046910.1021/jacsau.4c00469
Thu V. Vuong, Mohammad Aghajohari, Xuebin Feng, Amanda K. Woodstock, Deepti M. Nambiar, Zeina C. Sleiman, Breeanna R. Urbanowicz* and Emma R. Master*, 
{"title":"Enzymatic Routes to Designer Hemicelluloses for Use in Biobased Materials","authors":"Thu V. Vuong,&nbsp;Mohammad Aghajohari,&nbsp;Xuebin Feng,&nbsp;Amanda K. Woodstock,&nbsp;Deepti M. Nambiar,&nbsp;Zeina C. Sleiman,&nbsp;Breeanna R. Urbanowicz* and Emma R. Master*,&nbsp;","doi":"10.1021/jacsau.4c0046910.1021/jacsau.4c00469","DOIUrl":null,"url":null,"abstract":"<p >Various enzymes can be used to modify the structure of hemicelluloses directly in vivo or following extraction from biomass sources, such as wood and agricultural residues. Generally, these enzymes can contribute to designer hemicelluloses through four main strategies: (1) enzymatic hydrolysis such as selective removal of side groups by glycoside hydrolases (GH) and carbohydrate esterases (CE), (2) enzymatic cross-linking, for instance, the selective addition of side groups by glycosyltransferases (GT) with activated sugars, (3) enzymatic polymerization by glycosynthases (GS) with activated glycosyl donors or transglycosylation, and (4) enzymatic functionalization, particularly via oxidation by carbohydrate oxidoreductases and via amination by amine transaminases. Thus, this Perspective will first highlight enzymes that play a role in regulating the degree of polymerization and side group composition of hemicelluloses, and subsequently, it will explore enzymes that enhance cross-linking capabilities and incorporate novel chemical functionalities into saccharide structures. These enzymatic routes offer a precise way to tailor the properties of hemicelluloses for specific applications in biobased materials, contributing to the development of renewable alternatives to conventional materials derived from fossil fuels.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"4 11","pages":"4044–4065 4044–4065"},"PeriodicalIF":8.5000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.4c00469","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacsau.4c00469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Various enzymes can be used to modify the structure of hemicelluloses directly in vivo or following extraction from biomass sources, such as wood and agricultural residues. Generally, these enzymes can contribute to designer hemicelluloses through four main strategies: (1) enzymatic hydrolysis such as selective removal of side groups by glycoside hydrolases (GH) and carbohydrate esterases (CE), (2) enzymatic cross-linking, for instance, the selective addition of side groups by glycosyltransferases (GT) with activated sugars, (3) enzymatic polymerization by glycosynthases (GS) with activated glycosyl donors or transglycosylation, and (4) enzymatic functionalization, particularly via oxidation by carbohydrate oxidoreductases and via amination by amine transaminases. Thus, this Perspective will first highlight enzymes that play a role in regulating the degree of polymerization and side group composition of hemicelluloses, and subsequently, it will explore enzymes that enhance cross-linking capabilities and incorporate novel chemical functionalities into saccharide structures. These enzymatic routes offer a precise way to tailor the properties of hemicelluloses for specific applications in biobased materials, contributing to the development of renewable alternatives to conventional materials derived from fossil fuels.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
设计用于生物基材料的半纤维素的酶法途径
各种酶可直接在体内或从木材和农业残留物等生物质来源提取后用于改变半纤维素的结构。一般来说,这些酶可通过以下四种主要策略促进半纤维素的设计:(1) 酶水解,例如糖苷水解酶(GH)和碳水化合物酯酶(CE)选择性去除侧基;(2) 酶交联,例如糖基转移酶(GT)选择性添加活化糖的侧基、(4) 酶功能化,特别是通过碳水化合物氧化还原酶的氧化作用和胺转氨酶的胺化作用。因此,本视角将首先重点介绍在调节半纤维素聚合度和侧基组成方面发挥作用的酶,随后将探讨可增强交联能力并将新型化学功能结合到糖结构中的酶。这些酶法路线提供了一种精确的方法,可针对生物基材料的特定应用调整半纤维素的特性,从而有助于开发可再生替代品,取代从化石燃料中提取的传统材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊最新文献
Issue Editorial Masthead Issue Publication Information Mechanistic Insights into Nonadiabatic Interband Transitions on a Semiconductor Surface Induced by Hydrogen Atom Collisions. Revealing the Ultrafast Energy Transfer Pathways in Energetic Materials: Time-Dependent and Quantum State-Resolved Mechanistic Insights into Nonadiabatic Interband Transitions on a Semiconductor Surface Induced by Hydrogen Atom Collisions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1