Guoke Tang, Yucai Li, Yi Liu, Lan Lin, Jielin Wang, Xing Wang, Xiaojian Ye
{"title":"Robustly Injectable Tetra-PEG Hydrogel Sealants for Annulus Fibrosus Repair.","authors":"Guoke Tang, Yucai Li, Yi Liu, Lan Lin, Jielin Wang, Xing Wang, Xiaojian Ye","doi":"10.1002/adhm.202403163","DOIUrl":null,"url":null,"abstract":"<p><p>Discectomy serves as the primary therapeutic approach for lumbar disc herniation, but the annular fibrosus defects after discectomy may lead to recurrence of disc herniation. Despite recent advances in bioinspired adhesives to seal the AF defect, the growing popularity of endoscopic discectomy has put forward high requirements for the tissue bioadhesives with rapid injectability, easy operation, and robust tissue adhesion in underwater environments. Herein, a rapidly in situ forming injectable tetra-PEG bioadhesive (ISG) comprising of FDA-approved tetra-armed poly (ethylene glycol) amine (tetra-PEG-NH<sub>2</sub>) and tetra-armed poly (ethylene glycol) succinimidyl glutarate (tetra-PEG-SG) for the sutureless closure of AF defects, is reported. Relying on quick ammonolysis reaction between N-hydroxysuccinimide (NHS)-ester of tetra-PEG-SG polymer and amine groups of tetra-PEG-NH<sub>2</sub> polymer and tissue proteins, the uniform networks are formed within seconds with easy injection, efficient waterproofness, instant tissue adhesion, and durable compliance. The goat lumbar discectomy model was used to assess the effect of ISG hydrogels in vivo. The results reveal that the resultant ISG bioadhesive can effectively maintain the disc height, fuse with the host tissue, ameliorate IVD degeneration, and retain the initial biomechanics. Together, this study provides an efficient strategy of in situ injectable glue for the minimally invasive treatment of AF defects.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2403163"},"PeriodicalIF":10.0000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202403163","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Discectomy serves as the primary therapeutic approach for lumbar disc herniation, but the annular fibrosus defects after discectomy may lead to recurrence of disc herniation. Despite recent advances in bioinspired adhesives to seal the AF defect, the growing popularity of endoscopic discectomy has put forward high requirements for the tissue bioadhesives with rapid injectability, easy operation, and robust tissue adhesion in underwater environments. Herein, a rapidly in situ forming injectable tetra-PEG bioadhesive (ISG) comprising of FDA-approved tetra-armed poly (ethylene glycol) amine (tetra-PEG-NH2) and tetra-armed poly (ethylene glycol) succinimidyl glutarate (tetra-PEG-SG) for the sutureless closure of AF defects, is reported. Relying on quick ammonolysis reaction between N-hydroxysuccinimide (NHS)-ester of tetra-PEG-SG polymer and amine groups of tetra-PEG-NH2 polymer and tissue proteins, the uniform networks are formed within seconds with easy injection, efficient waterproofness, instant tissue adhesion, and durable compliance. The goat lumbar discectomy model was used to assess the effect of ISG hydrogels in vivo. The results reveal that the resultant ISG bioadhesive can effectively maintain the disc height, fuse with the host tissue, ameliorate IVD degeneration, and retain the initial biomechanics. Together, this study provides an efficient strategy of in situ injectable glue for the minimally invasive treatment of AF defects.
期刊介绍:
Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.