Wen Song, Sudi Chen, Xitong Ren, Xi Su, Chongping Song, Yusen Li, Long Chen, Feng Bai
{"title":"Isomeric Covalent Organic Frameworks for High-Efficiency Photocatalytic CO2 Reduction: Substituent Position Effect","authors":"Wen Song, Sudi Chen, Xitong Ren, Xi Su, Chongping Song, Yusen Li, Long Chen, Feng Bai","doi":"10.1002/smll.202409117","DOIUrl":null,"url":null,"abstract":"The exploration of covalent organic frameworks (COFs) for high-efficiency photocatalytic CO<sub>2</sub> reduction is urgently demanded. Herein, COF-based catalysts are constructed for the selective photoreduction of CO<sub>2</sub> to CO via delicately designed isomeric monomers with substituent at the 4,5,9,10- positions (K) or 1,3,6,8-positions (A) of pyrene knots. The distinct substituted regions significantly affect the planarity of pyrene knots, resulting in COFs with different microstructures and photocatalytic activities. While employing a 5 W LED white-light as the light source, the single atomic Co contained A-Py-Bpy-COF-Co showcased a moderate CO evolution rate of 2174.4 µmol g<sup>−1</sup> h<sup>−1</sup>. In sharp contrast, K-Py-Bpy-COF-Co reveals a considerable CO photo-reduction rate of 12 476.4 µmol g<sup>−1</sup> h<sup>−1</sup> (5.7 times higher than A-Py-Bpy-COF) with a selectivity up to 93.3%. Remarkably, the excellent photocatalytic activity of K-Py-Bpy-COF-Co can be maintained for at least 5 cycles without obvious decay. The distinct photocatalytic properties of the two isomeric COFs can be attributed to the larger steric-hindrance of K-Py-4CHO which enlarges the interlayer distances to inhibit exciton quenching and electron-richer nature of monatomic Co in K-Py-Bpy-COF-Co. This work provides a new protocol to explore COFs with boosted photocatalytic performance via isomeric design from refined modulation of reported COFs.","PeriodicalId":228,"journal":{"name":"Small","volume":"1 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202409117","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The exploration of covalent organic frameworks (COFs) for high-efficiency photocatalytic CO2 reduction is urgently demanded. Herein, COF-based catalysts are constructed for the selective photoreduction of CO2 to CO via delicately designed isomeric monomers with substituent at the 4,5,9,10- positions (K) or 1,3,6,8-positions (A) of pyrene knots. The distinct substituted regions significantly affect the planarity of pyrene knots, resulting in COFs with different microstructures and photocatalytic activities. While employing a 5 W LED white-light as the light source, the single atomic Co contained A-Py-Bpy-COF-Co showcased a moderate CO evolution rate of 2174.4 µmol g−1 h−1. In sharp contrast, K-Py-Bpy-COF-Co reveals a considerable CO photo-reduction rate of 12 476.4 µmol g−1 h−1 (5.7 times higher than A-Py-Bpy-COF) with a selectivity up to 93.3%. Remarkably, the excellent photocatalytic activity of K-Py-Bpy-COF-Co can be maintained for at least 5 cycles without obvious decay. The distinct photocatalytic properties of the two isomeric COFs can be attributed to the larger steric-hindrance of K-Py-4CHO which enlarges the interlayer distances to inhibit exciton quenching and electron-richer nature of monatomic Co in K-Py-Bpy-COF-Co. This work provides a new protocol to explore COFs with boosted photocatalytic performance via isomeric design from refined modulation of reported COFs.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.