Unleashing XIST from X-chromosome inactivation

IF 6 2区 生物学 Q1 CELL BIOLOGY Current Opinion in Cell Biology Pub Date : 2024-11-27 DOI:10.1016/j.ceb.2024.102446
Céline Morey, Claire Rougeulle, Jean-François Ouimette
{"title":"Unleashing XIST from X-chromosome inactivation","authors":"Céline Morey,&nbsp;Claire Rougeulle,&nbsp;Jean-François Ouimette","doi":"10.1016/j.ceb.2024.102446","DOIUrl":null,"url":null,"abstract":"<div><div>Recognition that the most abundant class of genes present in the human genome are those producing long noncoding RNA (lncRNA) has hyped research on this category of transcripts. One such prototypical RNA, <em>Xist</em>, has particularly fueled interest. Initially characterized for its specific expression from the inactive X (Xi), recent studies have uncovered the molecular mechanisms underlying its essential role in the initiation of X-chromosome inactivation, from its exquisitely precise transcriptional regulation to the plethora of protein interactors forming the <em>Xist</em> ribonucleoprotein (RNP) that mediate its gene silencing activity. Here, we will discuss the recent advances that have broadened our knowledge of <em>Xist</em> functions, challenging classical models and revealing unsuspected, unconventional actions of its RNP.</div></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"92 ","pages":"Article 102446"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095506742400125X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Recognition that the most abundant class of genes present in the human genome are those producing long noncoding RNA (lncRNA) has hyped research on this category of transcripts. One such prototypical RNA, Xist, has particularly fueled interest. Initially characterized for its specific expression from the inactive X (Xi), recent studies have uncovered the molecular mechanisms underlying its essential role in the initiation of X-chromosome inactivation, from its exquisitely precise transcriptional regulation to the plethora of protein interactors forming the Xist ribonucleoprotein (RNP) that mediate its gene silencing activity. Here, we will discuss the recent advances that have broadened our knowledge of Xist functions, challenging classical models and revealing unsuspected, unconventional actions of its RNP.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从 X 染色体失活中释放 XIST
人类基因组中最丰富的一类基因是产生长非编码 RNA(lncRNA)的基因,这一认识催生了对这类转录本的研究。其中一种典型的 RNA--Xist--尤其引起了人们的兴趣。最近的研究揭示了它在启动 X 染色体失活过程中发挥重要作用的分子机制,从其极其精确的转录调控到形成 Xist 核糖核蛋白(RNP)的大量蛋白相互作用者,这些都是其基因沉默活性的介导因素。在这里,我们将讨论最近的研究进展,这些进展拓宽了我们对 Xist 功能的认识,挑战了经典模型,并揭示了其 RNP 未曾预料到的非常规作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Opinion in Cell Biology
Current Opinion in Cell Biology 生物-细胞生物学
CiteScore
14.60
自引率
1.30%
发文量
79
审稿时长
93 days
期刊介绍: Current Opinion in Cell Biology (COCEBI) is a highly respected journal that specializes in publishing authoritative, comprehensive, and systematic reviews in the field of cell biology. The journal's primary aim is to provide a clear and readable synthesis of the latest advances in cell biology, helping specialists stay current with the rapidly evolving field. Expert authors contribute to the journal by annotating and highlighting the most significant papers from the extensive body of research published annually, offering valuable insights and saving time for readers by distilling key findings. COCEBI is part of the Current Opinion and Research (CO+RE) suite of journals, which leverages the legacy of editorial excellence, high impact, and global reach to ensure that the journal is a widely read resource integral to scientists' workflow. It is published by Elsevier, a publisher known for its commitment to excellence in scientific publishing and the communication of reproducible biomedical research aimed at improving human health. The journal's content is designed to be an invaluable resource for a diverse audience, including researchers, lecturers, teachers, professionals, policymakers, and students.
期刊最新文献
Interplay between Notch signaling and mechanical forces during developmental patterning processes Design principles of regulatory networks underlying epithelial mesenchymal plasticity in cancer cells Unleashing XIST from X-chromosome inactivation SMC-mediated chromosome organization: Does loop extrusion explain it all? Mechanochemical control systems regulating animal cell size
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1