Denise Tan, Yueying Yao, Yifan Zhou, Chin Meng Khoo, Ludovic Penseyres, Andreas Rytz, Leroy Sivappiragasam Pakkiri, Chester Lee Drum, Jung Eun Kim, Kim-Anne Lê
{"title":"Differently Processed Low Doses of β-Glucan from Oat Bran Similarly Attenuate Postprandial Glycemic Response.","authors":"Denise Tan, Yueying Yao, Yifan Zhou, Chin Meng Khoo, Ludovic Penseyres, Andreas Rytz, Leroy Sivappiragasam Pakkiri, Chester Lee Drum, Jung Eun Kim, Kim-Anne Lê","doi":"10.3390/foods13223623","DOIUrl":null,"url":null,"abstract":"<p><p>Incorporating β-glucan-rich oat bran (OB) can attenuate postprandial glycemic response (PPGR) in solid foods, but its effect in liquid matrices is unclear. This study investigated the ability of differently processed low-dose-β-glucan-containing beverages to lower PPGR, and the mechanisms of action. Twenty participants consumed five malt beverages made from cocoa powder: intact OB (Intact), OB treated with enzymatic hydrolysis (EnzymA, EnzymB) or extrusion (Extr), or no OB (Ctrl). Four-hour postprandial incremental areas under the curve (iAUC) and peak incremental concentrations (iCmax) of glucose, insulin, glucagon-like peptide 1 (GLP-1), gastric inhibitory polypeptide (GIP), and paracetamol were evaluated. The molecular weight (MW) and extractability of the β-glucan in all the test products were also assessed. The three-hour glucose iAUC significantly decreased by -26%, -28%, -32%, and -38% in Intact, EnzymA, EnzymB, and Extr, respectively, and the insulin levels of the oat-containing products were also significantly lower compared to Ctrl. Intact and Extr elicited a lower insulin iCmax and GLP-1 3 h iAUC compared to Ctrl. However, the GIP and paracetamol levels were not changed. All the processed OBs improved β-glucan extractability and lowered the MW of β-glucan compared to Intact. In conclusion, low-dose oat β-glucan in a beverage significantly reduced PPGR, with effects maintained across different oat processing methods.</p>","PeriodicalId":12386,"journal":{"name":"Foods","volume":"13 22","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/foods13223623","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Incorporating β-glucan-rich oat bran (OB) can attenuate postprandial glycemic response (PPGR) in solid foods, but its effect in liquid matrices is unclear. This study investigated the ability of differently processed low-dose-β-glucan-containing beverages to lower PPGR, and the mechanisms of action. Twenty participants consumed five malt beverages made from cocoa powder: intact OB (Intact), OB treated with enzymatic hydrolysis (EnzymA, EnzymB) or extrusion (Extr), or no OB (Ctrl). Four-hour postprandial incremental areas under the curve (iAUC) and peak incremental concentrations (iCmax) of glucose, insulin, glucagon-like peptide 1 (GLP-1), gastric inhibitory polypeptide (GIP), and paracetamol were evaluated. The molecular weight (MW) and extractability of the β-glucan in all the test products were also assessed. The three-hour glucose iAUC significantly decreased by -26%, -28%, -32%, and -38% in Intact, EnzymA, EnzymB, and Extr, respectively, and the insulin levels of the oat-containing products were also significantly lower compared to Ctrl. Intact and Extr elicited a lower insulin iCmax and GLP-1 3 h iAUC compared to Ctrl. However, the GIP and paracetamol levels were not changed. All the processed OBs improved β-glucan extractability and lowered the MW of β-glucan compared to Intact. In conclusion, low-dose oat β-glucan in a beverage significantly reduced PPGR, with effects maintained across different oat processing methods.
期刊介绍:
Foods (ISSN 2304-8158) is an international, peer-reviewed scientific open access journal which provides an advanced forum for studies related to all aspects of food research. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists, researchers, and other food professionals to publish their experimental and theoretical results in as much detail as possible or share their knowledge with as much readers unlimitedly as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
manuscripts regarding research proposals and research ideas will be particularly welcomed
electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material
we also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds