Deriving comprehensive literature trends on multi-omics analysis studies in autism spectrum disorder using literature mining pipeline.

IF 3.2 3区 医学 Q2 NEUROSCIENCES Frontiers in Neuroscience Pub Date : 2024-11-12 eCollection Date: 2024-01-01 DOI:10.3389/fnins.2024.1400412
Dattatray Mongad, Indhupriya Subramanian, Anamika Krishanpal
{"title":"Deriving comprehensive literature trends on multi-omics analysis studies in autism spectrum disorder using literature mining pipeline.","authors":"Dattatray Mongad, Indhupriya Subramanian, Anamika Krishanpal","doi":"10.3389/fnins.2024.1400412","DOIUrl":null,"url":null,"abstract":"<p><p>Autism spectrum disorder (ASD) is characterized by highly heterogenous abnormalities in functional brain connectivity affecting social behavior. There is a significant progress in understanding the molecular and genetic basis of ASD in the last decade using multi-omics approach. Mining this large volume of biomedical literature for insights requires considerable amount of manual intervention for curation. Machine learning and artificial intelligence fields are advancing toward simplifying data mining from unstructured text data. Here, we demonstrate our literature mining pipeline to accelerate data to insights. Using topic modeling and generative AI techniques, we present a pipeline that can classify scientific literature into thematic clusters and can help in a wide array of applications such as knowledgebase creation, conversational virtual assistant, and summarization. Employing our pipeline, we explored the ASD literature, specifically around multi-omics studies to understand the molecular interplay underlying autism brain.</p>","PeriodicalId":12639,"journal":{"name":"Frontiers in Neuroscience","volume":"18 ","pages":"1400412"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11590066/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnins.2024.1400412","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Autism spectrum disorder (ASD) is characterized by highly heterogenous abnormalities in functional brain connectivity affecting social behavior. There is a significant progress in understanding the molecular and genetic basis of ASD in the last decade using multi-omics approach. Mining this large volume of biomedical literature for insights requires considerable amount of manual intervention for curation. Machine learning and artificial intelligence fields are advancing toward simplifying data mining from unstructured text data. Here, we demonstrate our literature mining pipeline to accelerate data to insights. Using topic modeling and generative AI techniques, we present a pipeline that can classify scientific literature into thematic clusters and can help in a wide array of applications such as knowledgebase creation, conversational virtual assistant, and summarization. Employing our pipeline, we explored the ASD literature, specifically around multi-omics studies to understand the molecular interplay underlying autism brain.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用文献挖掘管道得出自闭症谱系障碍多组学分析研究的综合文献趋势。
自闭症谱系障碍(ASD)的特征是影响社交行为的大脑功能连接出现高度异质性异常。在过去十年中,利用多组学方法在了解 ASD 的分子和遗传基础方面取得了重大进展。要从大量的生物医学文献中挖掘洞察力,需要大量的人工干预。机器学习和人工智能领域正朝着简化非结构化文本数据挖掘的方向发展。在此,我们展示了我们的文献挖掘管道,以加快从数据到见解的过程。通过使用主题建模和生成式人工智能技术,我们展示了一个可将科学文献分类为主题集群的管道,该管道有助于知识库创建、对话式虚拟助手和摘要等广泛应用。利用我们的管道,我们探索了自闭症文献,特别是围绕多组学研究,以了解自闭症大脑的分子相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Neuroscience
Frontiers in Neuroscience NEUROSCIENCES-
CiteScore
6.20
自引率
4.70%
发文量
2070
审稿时长
14 weeks
期刊介绍: Neural Technology is devoted to the convergence between neurobiology and quantum-, nano- and micro-sciences. In our vision, this interdisciplinary approach should go beyond the technological development of sophisticated methods and should contribute in generating a genuine change in our discipline.
期刊最新文献
A neuromorphic event data interpretation approach with hardware reservoir. Dynamic multilayer networks reveal mind wandering. Editorial: Emerging artificial intelligence technologies for neurological and neuropsychiatric research. The characteristics of auditorial event-related potential under propofol sedation associated with preoperative cognitive performance in glioma patients. Four heterozygous de novo variants in ASXL3 identified with Bainbridge-Ropers syndrome and further dissecting published genotype-phenotype spectrum.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1