Adaptive Kernel Convolutional Stereo Matching Recurrent Network.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL Sensors Pub Date : 2024-11-20 DOI:10.3390/s24227386
Jiamian Wang, Haijiang Sun, Ping Jia
{"title":"Adaptive Kernel Convolutional Stereo Matching Recurrent Network.","authors":"Jiamian Wang, Haijiang Sun, Ping Jia","doi":"10.3390/s24227386","DOIUrl":null,"url":null,"abstract":"<p><p>For binocular stereo matching techniques, the most advanced method currently is using an iterative structure based on GRUs. Methods in this class have shown high performance on both high-resolution images and standard benchmarks. However, simply replacing cost aggregation with a GRU iterative method leads to the original cost volume for disparity calculation lacking non-local geometric and contextual information. Based on this, this paper proposes a new GRU iteration-based adaptive kernel convolution deep recurrent network architecture for stereo matching. This paper proposes a kernel convolution-based adaptive multi-scale pyramid pooling (KAP) module that fully considers the spatial correlation between pixels and adds new matching attention (MAR) to refine the matching cost volume before inputting it into the iterative network for iterative updates, enhancing the pixel-level representation ability of the image and improving the overall generalization ability of the network. At present, the AKC-Stereo network proposed in this paper has a higher improvement than the basic network. On the Sceneflow dataset, the EPE of AKC-Stereo reaches 0.45, which is 0.02 higher than the basic network. On the KITTI 2015 dataset, the AKC-Stereo network outperforms the base network by 5.6% on the D1-all metric.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"24 22","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24227386","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

For binocular stereo matching techniques, the most advanced method currently is using an iterative structure based on GRUs. Methods in this class have shown high performance on both high-resolution images and standard benchmarks. However, simply replacing cost aggregation with a GRU iterative method leads to the original cost volume for disparity calculation lacking non-local geometric and contextual information. Based on this, this paper proposes a new GRU iteration-based adaptive kernel convolution deep recurrent network architecture for stereo matching. This paper proposes a kernel convolution-based adaptive multi-scale pyramid pooling (KAP) module that fully considers the spatial correlation between pixels and adds new matching attention (MAR) to refine the matching cost volume before inputting it into the iterative network for iterative updates, enhancing the pixel-level representation ability of the image and improving the overall generalization ability of the network. At present, the AKC-Stereo network proposed in this paper has a higher improvement than the basic network. On the Sceneflow dataset, the EPE of AKC-Stereo reaches 0.45, which is 0.02 higher than the basic network. On the KITTI 2015 dataset, the AKC-Stereo network outperforms the base network by 5.6% on the D1-all metric.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自适应核卷积立体匹配循环网络
对于双目立体匹配技术,目前最先进的方法是使用基于 GRU 的迭代结构。这类方法在高分辨率图像和标准基准上都表现出很高的性能。然而,简单地用 GRU 迭代方法取代成本聚合,会导致用于差异计算的原始成本量缺乏非本地几何和上下文信息。基于此,本文提出了一种新的基于 GRU 迭代的自适应核卷积深度递归网络架构,用于立体匹配。本文提出了基于核卷积的自适应多尺度金字塔池化(KAP)模块,该模块充分考虑了像素间的空间相关性,增加了新的匹配注意力(MAR)来细化匹配代价量,然后再输入到迭代网络中进行迭代更新,增强了图像的像素级表示能力,提高了网络的整体泛化能力。目前,本文提出的 AKC-Stereo 网络比基本网络具有更高的改进性。在 Sceneflow 数据集上,AKC-Stereo 的 EPE 达到 0.45,比基本网络高 0.02。在 KITTI 2015 数据集上,AKC-Stereo 网络在 D1-all 指标上比基本网络高出 5.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Privacy-Preserving Synthetic Data Generation Method for IoT-Sensor Network IDS Using CTGAN. Energy Efficiency for 5G and Beyond 5G: Potential, Limitations, and Future Directions. Enhanced Fault Detection in Photovoltaic Panels Using CNN-Based Classification with PyQt5 Implementation. Adaptive Kernel Convolutional Stereo Matching Recurrent Network. Enhancing Direction-of-Arrival Estimation with Multi-Task Learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1