New approaches in bovine spermatozoa evaluation and their relationship with male fertility

IF 2.2 2区 农林科学 Q1 AGRICULTURE, DAIRY & ANIMAL SCIENCE Animal Reproduction Science Pub Date : 2024-11-26 DOI:10.1016/j.anireprosci.2024.107656
Mayra Elena Ortiz D'Ávila Assumpção , Thais Rose dos Santos Hamilton
{"title":"New approaches in bovine spermatozoa evaluation and their relationship with male fertility","authors":"Mayra Elena Ortiz D'Ávila Assumpção ,&nbsp;Thais Rose dos Santos Hamilton","doi":"10.1016/j.anireprosci.2024.107656","DOIUrl":null,"url":null,"abstract":"<div><div>Male fertility potential depends on physical, endocrine, and genetic factors responsible for producing functional male gametes. Although the main function of the male gamete, the spermatozoon, is to deliver its genetic material to the oocyte, this premise has been modified over the past few years. It is believed that the spermatozoon provides essential factors for fertilization and pre-implantation embryo development. A viable/healthy spermatozoon has functional subcellular compartments (nucleus, acrosome, midpiece, and flagellum) due to the actions of proteins, transcripts, and epigenetic marks in the organelles present in them that have important roles in reproductive biology. Male fertility potential reflects viable spermatozoa with proper function. Therefore, new approaches to functional sperm analysis are essential. Additionally, intrinsic factors and sperm molecules constitute potential biomarkers of viable spermatozoa and male fertility. Among these factors are proteins, the genome, and coding and non-coding RNAs, such as microRNAs, that act during fertilization and early embryo development. Research has been seeking increasingly efficient tools to predict fertility and functional studies of these molecules through gene and protein expression. Thus, analytical tools are essential to identify and classify viable and functional spermatozoa, to evaluate assisted reproductive male potential.</div></div>","PeriodicalId":7880,"journal":{"name":"Animal Reproduction Science","volume":"272 ","pages":"Article 107656"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Reproduction Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378432024002562","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Male fertility potential depends on physical, endocrine, and genetic factors responsible for producing functional male gametes. Although the main function of the male gamete, the spermatozoon, is to deliver its genetic material to the oocyte, this premise has been modified over the past few years. It is believed that the spermatozoon provides essential factors for fertilization and pre-implantation embryo development. A viable/healthy spermatozoon has functional subcellular compartments (nucleus, acrosome, midpiece, and flagellum) due to the actions of proteins, transcripts, and epigenetic marks in the organelles present in them that have important roles in reproductive biology. Male fertility potential reflects viable spermatozoa with proper function. Therefore, new approaches to functional sperm analysis are essential. Additionally, intrinsic factors and sperm molecules constitute potential biomarkers of viable spermatozoa and male fertility. Among these factors are proteins, the genome, and coding and non-coding RNAs, such as microRNAs, that act during fertilization and early embryo development. Research has been seeking increasingly efficient tools to predict fertility and functional studies of these molecules through gene and protein expression. Thus, analytical tools are essential to identify and classify viable and functional spermatozoa, to evaluate assisted reproductive male potential.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Animal Reproduction Science
Animal Reproduction Science 农林科学-奶制品与动物科学
CiteScore
4.50
自引率
9.10%
发文量
136
审稿时长
54 days
期刊介绍: Animal Reproduction Science publishes results from studies relating to reproduction and fertility in animals. This includes both fundamental research and applied studies, including management practices that increase our understanding of the biology and manipulation of reproduction. Manuscripts should go into depth in the mechanisms involved in the research reported, rather than a give a mere description of findings. The focus is on animals that are useful to humans including food- and fibre-producing; companion/recreational; captive; and endangered species including zoo animals, but excluding laboratory animals unless the results of the study provide new information that impacts the basic understanding of the biology or manipulation of reproduction. The journal''s scope includes the study of reproductive physiology and endocrinology, reproductive cycles, natural and artificial control of reproduction, preservation and use of gametes and embryos, pregnancy and parturition, infertility and sterility, diagnostic and therapeutic techniques. The Editorial Board of Animal Reproduction Science has decided not to publish papers in which there is an exclusive examination of the in vitro development of oocytes and embryos; however, there will be consideration of papers that include in vitro studies where the source of the oocytes and/or development of the embryos beyond the blastocyst stage is part of the experimental design.
期刊最新文献
Niosomal nanocarriers loaded with artemisinin has potential to enhance the functional characteristics of cryo-preserved equine spermatozoa New approaches in bovine spermatozoa evaluation and their relationship with male fertility Regulatory T cells in bovine fertility: Current understanding and future prospects Boar semen microbiome: Insights and potential implications Epithelial-mesenchymal transition during the growth and involution of the prostate gland in wild ground squirrels (Spermophilus dauricus)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1