Protective effects of olive oil antioxidant phenols on mercury-induced phosphatidylserine externalization in erythrocyte membrane: Insights into scramblase and flippase activity
Pasquale Perrone , Rosaria Notariale , Gennaro Lettieri , Luigi Mele , Valeria La Pietra , Marina Piscopo , Caterina Manna
{"title":"Protective effects of olive oil antioxidant phenols on mercury-induced phosphatidylserine externalization in erythrocyte membrane: Insights into scramblase and flippase activity","authors":"Pasquale Perrone , Rosaria Notariale , Gennaro Lettieri , Luigi Mele , Valeria La Pietra , Marina Piscopo , Caterina Manna","doi":"10.1016/j.freeradbiomed.2024.11.047","DOIUrl":null,"url":null,"abstract":"<div><div>In several physiopathological processes, phosphatidylserine (PS), normally sequestered to the inner leaflet of the plasma membrane, becomes exposed to the cell surface. In erythrocytes (RBC), PS externalization is a crucial event for the removal of aged/damaged cells but can also be associated with increased prothrombotic activity. Structurally related olive oil antioxidants, including hydroxytyrosol (HT), are able to significantly reduce the percentage of PS-exposing RBC, when cells are exposed to toxic compounds such as the heavy metal mercury (Hg). The aim of the present study was to identify the molecular mechanisms underlying the protective effect, with a focus on two different phospholipid translocases, the ATP-dependent flippase ATP11C and the calcium-dependent scramblase PLSCR1, which are responsible for PS internalization and exposure, respectively. In addition to HT, its monophenol analogue, tyrosol, and its <em>in vivo</em> metabolite, homovanillic alcohol, were also tested. Our investigation revealed that exposure of human intact RBC to HgCl<sub>2</sub> induced a decrease in flippase activity and an increase in scramblase activity, and that all the selected phenols restored the control activity, regardless of their different scavenging properties. Interestingly, all phenols restored the ATP level of control cells, which were significantly reduced by HgCl<sub>2</sub> treatment. Conversely, no variation in intracellular calcium was observed under our experimental conditions. Additionally, all phenols restored the glutathione levels, significantly reduced in the presence of HgCl<sub>2</sub>. In line with the data on the enzymatic activity, Western blotting analysis indicated changes in the membrane expression of the two enzymes, alterations prevented by antioxidant pre-treatment. Finally, molecular docking analysis suggests that the tested antioxidants may be able to directly interact with ATP11C. Our findings provide an experimental basis for the use of olive oil bioactive compounds in nutritional/nutraceutical strategies for the prevention of Hg-related toxicity, particularly in relation to the cardiovascular tissues.</div></div>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":"227 ","pages":"Pages 42-51"},"PeriodicalIF":7.1000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0891584924010815","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In several physiopathological processes, phosphatidylserine (PS), normally sequestered to the inner leaflet of the plasma membrane, becomes exposed to the cell surface. In erythrocytes (RBC), PS externalization is a crucial event for the removal of aged/damaged cells but can also be associated with increased prothrombotic activity. Structurally related olive oil antioxidants, including hydroxytyrosol (HT), are able to significantly reduce the percentage of PS-exposing RBC, when cells are exposed to toxic compounds such as the heavy metal mercury (Hg). The aim of the present study was to identify the molecular mechanisms underlying the protective effect, with a focus on two different phospholipid translocases, the ATP-dependent flippase ATP11C and the calcium-dependent scramblase PLSCR1, which are responsible for PS internalization and exposure, respectively. In addition to HT, its monophenol analogue, tyrosol, and its in vivo metabolite, homovanillic alcohol, were also tested. Our investigation revealed that exposure of human intact RBC to HgCl2 induced a decrease in flippase activity and an increase in scramblase activity, and that all the selected phenols restored the control activity, regardless of their different scavenging properties. Interestingly, all phenols restored the ATP level of control cells, which were significantly reduced by HgCl2 treatment. Conversely, no variation in intracellular calcium was observed under our experimental conditions. Additionally, all phenols restored the glutathione levels, significantly reduced in the presence of HgCl2. In line with the data on the enzymatic activity, Western blotting analysis indicated changes in the membrane expression of the two enzymes, alterations prevented by antioxidant pre-treatment. Finally, molecular docking analysis suggests that the tested antioxidants may be able to directly interact with ATP11C. Our findings provide an experimental basis for the use of olive oil bioactive compounds in nutritional/nutraceutical strategies for the prevention of Hg-related toxicity, particularly in relation to the cardiovascular tissues.
期刊介绍:
Free Radical Biology and Medicine is a leading journal in the field of redox biology, which is the study of the role of reactive oxygen species (ROS) and other oxidizing agents in biological systems. The journal serves as a premier forum for publishing innovative and groundbreaking research that explores the redox biology of health and disease, covering a wide range of topics and disciplines. Free Radical Biology and Medicine also commissions Special Issues that highlight recent advances in both basic and clinical research, with a particular emphasis on the mechanisms underlying altered metabolism and redox signaling. These Special Issues aim to provide a focused platform for the latest research in the field, fostering collaboration and knowledge exchange among researchers and clinicians.