Protective effects of olive oil antioxidant phenols on mercury-induced phosphatidylserine externalization in erythrocyte membrane: Insights into scramblase and flippase activity

IF 7.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Free Radical Biology and Medicine Pub Date : 2024-11-27 DOI:10.1016/j.freeradbiomed.2024.11.047
Pasquale Perrone , Rosaria Notariale , Gennaro Lettieri , Luigi Mele , Valeria La Pietra , Marina Piscopo , Caterina Manna
{"title":"Protective effects of olive oil antioxidant phenols on mercury-induced phosphatidylserine externalization in erythrocyte membrane: Insights into scramblase and flippase activity","authors":"Pasquale Perrone ,&nbsp;Rosaria Notariale ,&nbsp;Gennaro Lettieri ,&nbsp;Luigi Mele ,&nbsp;Valeria La Pietra ,&nbsp;Marina Piscopo ,&nbsp;Caterina Manna","doi":"10.1016/j.freeradbiomed.2024.11.047","DOIUrl":null,"url":null,"abstract":"<div><div>In several physiopathological processes, phosphatidylserine (PS), normally sequestered to the inner leaflet of the plasma membrane, becomes exposed to the cell surface. In erythrocytes (RBC), PS externalization is a crucial event for the removal of aged/damaged cells but can also be associated with increased prothrombotic activity. Structurally related olive oil antioxidants, including hydroxytyrosol (HT), are able to significantly reduce the percentage of PS-exposing RBC, when cells are exposed to toxic compounds such as the heavy metal mercury (Hg). The aim of the present study was to identify the molecular mechanisms underlying the protective effect, with a focus on two different phospholipid translocases, the ATP-dependent flippase ATP11C and the calcium-dependent scramblase PLSCR1, which are responsible for PS internalization and exposure, respectively. In addition to HT, its monophenol analogue, tyrosol, and its <em>in vivo</em> metabolite, homovanillic alcohol, were also tested. Our investigation revealed that exposure of human intact RBC to HgCl<sub>2</sub> induced a decrease in flippase activity and an increase in scramblase activity, and that all the selected phenols restored the control activity, regardless of their different scavenging properties. Interestingly, all phenols restored the ATP level of control cells, which were significantly reduced by HgCl<sub>2</sub> treatment. Conversely, no variation in intracellular calcium was observed under our experimental conditions. Additionally, all phenols restored the glutathione levels, significantly reduced in the presence of HgCl<sub>2</sub>. In line with the data on the enzymatic activity, Western blotting analysis indicated changes in the membrane expression of the two enzymes, alterations prevented by antioxidant pre-treatment. Finally, molecular docking analysis suggests that the tested antioxidants may be able to directly interact with ATP11C. Our findings provide an experimental basis for the use of olive oil bioactive compounds in nutritional/nutraceutical strategies for the prevention of Hg-related toxicity, particularly in relation to the cardiovascular tissues.</div></div>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":"227 ","pages":"Pages 42-51"},"PeriodicalIF":7.1000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0891584924010815","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In several physiopathological processes, phosphatidylserine (PS), normally sequestered to the inner leaflet of the plasma membrane, becomes exposed to the cell surface. In erythrocytes (RBC), PS externalization is a crucial event for the removal of aged/damaged cells but can also be associated with increased prothrombotic activity. Structurally related olive oil antioxidants, including hydroxytyrosol (HT), are able to significantly reduce the percentage of PS-exposing RBC, when cells are exposed to toxic compounds such as the heavy metal mercury (Hg). The aim of the present study was to identify the molecular mechanisms underlying the protective effect, with a focus on two different phospholipid translocases, the ATP-dependent flippase ATP11C and the calcium-dependent scramblase PLSCR1, which are responsible for PS internalization and exposure, respectively. In addition to HT, its monophenol analogue, tyrosol, and its in vivo metabolite, homovanillic alcohol, were also tested. Our investigation revealed that exposure of human intact RBC to HgCl2 induced a decrease in flippase activity and an increase in scramblase activity, and that all the selected phenols restored the control activity, regardless of their different scavenging properties. Interestingly, all phenols restored the ATP level of control cells, which were significantly reduced by HgCl2 treatment. Conversely, no variation in intracellular calcium was observed under our experimental conditions. Additionally, all phenols restored the glutathione levels, significantly reduced in the presence of HgCl2. In line with the data on the enzymatic activity, Western blotting analysis indicated changes in the membrane expression of the two enzymes, alterations prevented by antioxidant pre-treatment. Finally, molecular docking analysis suggests that the tested antioxidants may be able to directly interact with ATP11C. Our findings provide an experimental basis for the use of olive oil bioactive compounds in nutritional/nutraceutical strategies for the prevention of Hg-related toxicity, particularly in relation to the cardiovascular tissues.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Free Radical Biology and Medicine
Free Radical Biology and Medicine 医学-内分泌学与代谢
CiteScore
14.00
自引率
4.10%
发文量
850
审稿时长
22 days
期刊介绍: Free Radical Biology and Medicine is a leading journal in the field of redox biology, which is the study of the role of reactive oxygen species (ROS) and other oxidizing agents in biological systems. The journal serves as a premier forum for publishing innovative and groundbreaking research that explores the redox biology of health and disease, covering a wide range of topics and disciplines. Free Radical Biology and Medicine also commissions Special Issues that highlight recent advances in both basic and clinical research, with a particular emphasis on the mechanisms underlying altered metabolism and redox signaling. These Special Issues aim to provide a focused platform for the latest research in the field, fostering collaboration and knowledge exchange among researchers and clinicians.
期刊最新文献
Identification of tanshinone I as a natural Cu(II) ionophore Protective effects of olive oil antioxidant phenols on mercury-induced phosphatidylserine externalization in erythrocyte membrane: Insights into scramblase and flippase activity The RNA chaperone Hfq is a novel regulator of catalase expression and hydrogen peroxide-induced oxidative stress response in Listeria monocytogenes EGD-e. Cold atmospheric plasma restores skewed macrophage polarization in triple negative breast cancers via enhancing KAT6A acetylation Altered Mitochondrial Unfolded Protein Response and Protein Quality Control promote oxidative distress in Down Syndrome brain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1