Yuanfeng Qi , Wenwen Sun , Le Wang , Xiao Zhang , Xuetao Wu , Yingbo Li , Junfeng Wang
{"title":"Fluorescent sensing for boronic acid derivatives: Design, synthesis, mechanism, application and perspective in Boron Neutron Capture Therapy (BNCT)","authors":"Yuanfeng Qi , Wenwen Sun , Le Wang , Xiao Zhang , Xuetao Wu , Yingbo Li , Junfeng Wang","doi":"10.1016/j.dyepig.2024.112561","DOIUrl":null,"url":null,"abstract":"<div><div>Boron is ubiquitous in nature, and drugs based on boronic acid and esters are now widely developed and used. Boron Neutron Capture Therapy (BNCT), with its high selectivity in targeting cancer cells while minimizing damage to healthy tissues, is currently an innovative cancer treatment technology being explored worldwide. The treatment process of BNCT primarily involves delivering targeted <sup>10</sup>B drugs to the tumor site. After neutron irradiation, the <sup>10</sup>B drugs will absorb neutrons and undergo nuclear transformation into <sup>11</sup>B which subsequently decays to produce <sup>7</sup>Li and alpha particles, thereby damaging DNA and killing cancer cells. The concentration and location of the <sup>10</sup>B drugs delivered to tumor cells are critical determinants of the therapeutic effect of BNCT, making the sensing of boronic acid drugs particularly important. In this review, the design and synthesis of various boronic acid sensors with different chelating ligands were discussed, as well as the applications in BNCT. Finally, we analyze the current limitations and propose future perspectives for these sensors to improve their utility in biomedical applications.</div></div>","PeriodicalId":302,"journal":{"name":"Dyes and Pigments","volume":"235 ","pages":"Article 112561"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dyes and Pigments","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143720824006272","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Boron is ubiquitous in nature, and drugs based on boronic acid and esters are now widely developed and used. Boron Neutron Capture Therapy (BNCT), with its high selectivity in targeting cancer cells while minimizing damage to healthy tissues, is currently an innovative cancer treatment technology being explored worldwide. The treatment process of BNCT primarily involves delivering targeted 10B drugs to the tumor site. After neutron irradiation, the 10B drugs will absorb neutrons and undergo nuclear transformation into 11B which subsequently decays to produce 7Li and alpha particles, thereby damaging DNA and killing cancer cells. The concentration and location of the 10B drugs delivered to tumor cells are critical determinants of the therapeutic effect of BNCT, making the sensing of boronic acid drugs particularly important. In this review, the design and synthesis of various boronic acid sensors with different chelating ligands were discussed, as well as the applications in BNCT. Finally, we analyze the current limitations and propose future perspectives for these sensors to improve their utility in biomedical applications.
期刊介绍:
Dyes and Pigments covers the scientific and technical aspects of the chemistry and physics of dyes, pigments and their intermediates. Emphasis is placed on the properties of the colouring matters themselves rather than on their applications or the system in which they may be applied.
Thus the journal accepts research and review papers on the synthesis of dyes, pigments and intermediates, their physical or chemical properties, e.g. spectroscopic, surface, solution or solid state characteristics, the physical aspects of their preparation, e.g. precipitation, nucleation and growth, crystal formation, liquid crystalline characteristics, their photochemical, ecological or biological properties and the relationship between colour and chemical constitution. However, papers are considered which deal with the more fundamental aspects of colourant application and of the interactions of colourants with substrates or media.
The journal will interest a wide variety of workers in a range of disciplines whose work involves dyes, pigments and their intermediates, and provides a platform for investigators with common interests but diverse fields of activity such as cosmetics, reprographics, dye and pigment synthesis, medical research, polymers, etc.