The ethical aspects of integrating sentiment and emotion analysis in chatbots for depression intervention.

IF 3.2 3区 医学 Q2 PSYCHIATRY Frontiers in Psychiatry Pub Date : 2024-11-14 eCollection Date: 2024-01-01 DOI:10.3389/fpsyt.2024.1462083
Kerstin Denecke, Elia Gabarron
{"title":"The ethical aspects of integrating sentiment and emotion analysis in chatbots for depression intervention.","authors":"Kerstin Denecke, Elia Gabarron","doi":"10.3389/fpsyt.2024.1462083","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Digital health interventions specifically those realized as chatbots are increasingly available for mental health. They include technologies based on artificial intelligence that assess user's sentiment and emotions for the purpose of responding in an empathetic way, or for treatment purposes, e.g. for analyzing the expressed emotions and suggesting interventions.</p><p><strong>Methods: </strong>In this paper, we study the ethical dimensions of integrating these technologies in chatbots for depression intervention using the digital ethics canvas and the DTx Risk Assessment Canvas.</p><p><strong>Results: </strong>As result, we identified some specific risks associated with the integration of sentiment and emotion analysis methods into these systems related to the difficulty to recognize correctly the expressed sentiment or emotion from statements of individuals with depressive symptoms and the appropriate system reaction including risk detection. Depending on the realization of the sentiment or emotion analysis, which might be dictionary-based or machine-learning based, additional risks occur from biased training data or misinterpretations.</p><p><strong>Discussion: </strong>While technology decisions during system development can be made carefully depending on the use case, other ethical risks cannot be prevented on a technical level, but by carefully integrating such chatbots into the care process allowing for supervision by health professionals. We conclude that a careful reflection is needed when integrating sentiment and emotion analysis into chatbots for depression intervention. Balancing risk factors is key to leveraging technology in mental health in a way that enhances, rather than diminishes, user autonomy and agency.</p>","PeriodicalId":12605,"journal":{"name":"Frontiers in Psychiatry","volume":"15 ","pages":"1462083"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11602467/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fpsyt.2024.1462083","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Digital health interventions specifically those realized as chatbots are increasingly available for mental health. They include technologies based on artificial intelligence that assess user's sentiment and emotions for the purpose of responding in an empathetic way, or for treatment purposes, e.g. for analyzing the expressed emotions and suggesting interventions.

Methods: In this paper, we study the ethical dimensions of integrating these technologies in chatbots for depression intervention using the digital ethics canvas and the DTx Risk Assessment Canvas.

Results: As result, we identified some specific risks associated with the integration of sentiment and emotion analysis methods into these systems related to the difficulty to recognize correctly the expressed sentiment or emotion from statements of individuals with depressive symptoms and the appropriate system reaction including risk detection. Depending on the realization of the sentiment or emotion analysis, which might be dictionary-based or machine-learning based, additional risks occur from biased training data or misinterpretations.

Discussion: While technology decisions during system development can be made carefully depending on the use case, other ethical risks cannot be prevented on a technical level, but by carefully integrating such chatbots into the care process allowing for supervision by health professionals. We conclude that a careful reflection is needed when integrating sentiment and emotion analysis into chatbots for depression intervention. Balancing risk factors is key to leveraging technology in mental health in a way that enhances, rather than diminishes, user autonomy and agency.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Psychiatry
Frontiers in Psychiatry Medicine-Psychiatry and Mental Health
CiteScore
6.20
自引率
8.50%
发文量
2813
审稿时长
14 weeks
期刊介绍: Frontiers in Psychiatry publishes rigorously peer-reviewed research across a wide spectrum of translational, basic and clinical research. Field Chief Editor Stefan Borgwardt at the University of Basel is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide. The journal''s mission is to use translational approaches to improve therapeutic options for mental illness and consequently to improve patient treatment outcomes.
期刊最新文献
Do early-life circumstances predict late-life suicidal ideation? Evidence from SHARE data using machine learning. The ethical aspects of integrating sentiment and emotion analysis in chatbots for depression intervention. Elevated remnant cholesterol and the risk of prevalent major depressive disorder: a nationwide population-based study. Neurofilament light chain plasma levels in major depressive disorder: a brief research report. Unraveling the relationships among pandemic fear, cyberchondria, and alexithymia after China's exit from the zero-COVID policy: insights from a multi-center network analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1