Melatonin ameliorates age-related sarcopenia by inhibiting fibrogenic conversion of satellite cell.

IF 6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Medicine Pub Date : 2024-11-30 DOI:10.1186/s10020-024-00998-2
Guo-Zheng Zhu, Kai Zhao, Hong-Zhou Li, Di-Zheng Wu, Yun-Biao Chen, Dong Han, Jia-Wen Gao, Xing-Yu Chen, Yong-Peng Yu, Zhi-Wei Huang, Chen Tu, Zhao-Ming Zhong
{"title":"Melatonin ameliorates age-related sarcopenia by inhibiting fibrogenic conversion of satellite cell.","authors":"Guo-Zheng Zhu, Kai Zhao, Hong-Zhou Li, Di-Zheng Wu, Yun-Biao Chen, Dong Han, Jia-Wen Gao, Xing-Yu Chen, Yong-Peng Yu, Zhi-Wei Huang, Chen Tu, Zhao-Ming Zhong","doi":"10.1186/s10020-024-00998-2","DOIUrl":null,"url":null,"abstract":"<p><p>The fibrogenic conversion of satellite cells contributes to the atrophy and fibrosis of skeletal muscle, playing a significant role in the pathogenesis of age-related sarcopenia. Melatonin, a hormone secreted by the pineal gland, exhibits anti-aging and anti-fibrotic effects in various conditions. However, the effect of melatonin on satellite cell fate and age-related sarcopenia remains under-explored. Here, we report that melatonin treatment mitigated the loss of muscle mass and strength in aged mice, replenished the satellite cell pool and curtailed muscle fibrosis. When primary SCs were cultured in vitro and subjected to aging induction via D-galactose, they exhibited a diminished myogenic potential and a conversion from myogenic to fibrogenic lineage. Notably, melatonin treatment effectively restored the myogenic potential and inhibited this lineage conversion. Furthermore, melatonin attenuated the expression of the fibrogenic cytokine, transforming growth factor-β1, and reduced the phosphorylation of its downstream targets Smad2/3 both in vivo and in vitro. In summary, our findings show melatonin's capacity to counteract muscle decline and inhibit fibrogenic conversion in aging SCs and highlight its potential therapeutic value for age-related sarcopenia.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":"30 1","pages":"238"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s10020-024-00998-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The fibrogenic conversion of satellite cells contributes to the atrophy and fibrosis of skeletal muscle, playing a significant role in the pathogenesis of age-related sarcopenia. Melatonin, a hormone secreted by the pineal gland, exhibits anti-aging and anti-fibrotic effects in various conditions. However, the effect of melatonin on satellite cell fate and age-related sarcopenia remains under-explored. Here, we report that melatonin treatment mitigated the loss of muscle mass and strength in aged mice, replenished the satellite cell pool and curtailed muscle fibrosis. When primary SCs were cultured in vitro and subjected to aging induction via D-galactose, they exhibited a diminished myogenic potential and a conversion from myogenic to fibrogenic lineage. Notably, melatonin treatment effectively restored the myogenic potential and inhibited this lineage conversion. Furthermore, melatonin attenuated the expression of the fibrogenic cytokine, transforming growth factor-β1, and reduced the phosphorylation of its downstream targets Smad2/3 both in vivo and in vitro. In summary, our findings show melatonin's capacity to counteract muscle decline and inhibit fibrogenic conversion in aging SCs and highlight its potential therapeutic value for age-related sarcopenia.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Medicine
Molecular Medicine 医学-生化与分子生物学
CiteScore
8.60
自引率
0.00%
发文量
137
审稿时长
1 months
期刊介绍: Molecular Medicine is an open access journal that focuses on publishing recent findings related to disease pathogenesis at the molecular or physiological level. These insights can potentially contribute to the development of specific tools for disease diagnosis, treatment, or prevention. The journal considers manuscripts that present material pertinent to the genetic, molecular, or cellular underpinnings of critical physiological or disease processes. Submissions to Molecular Medicine are expected to elucidate the broader implications of the research findings for human disease and medicine in a manner that is accessible to a wide audience.
期刊最新文献
Melatonin ameliorates age-related sarcopenia by inhibiting fibrogenic conversion of satellite cell. MIF promotes Th17 cell differentiation in rheumatoid arthritis through ATF6 signal pathway. Lycorine ameliorates liver steatosis, oxidative stress, ferroptosis and intestinal homeostasis imbalance in MASLD mice. Polycomb protein RYBP facilitates super-enhancer activity. Decoding the anti-hypertensive mechanism of α-mangostin based on network pharmacology, molecular docking and experimental validation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1