{"title":"In Silico Tools to Score and Predict Cholesterol–Protein Interactions","authors":"Anna Nguyen, Alison E. Ondrus","doi":"10.1021/acs.jmedchem.4c01885","DOIUrl":null,"url":null,"abstract":"Cholesterol is structurally distinct from other lipids, which confers it with singular roles in membrane organization and protein function. As a signaling molecule, cholesterol engages in discrete interactions with transmembrane, peripheral, and certain soluble proteins to control cellular responses. Accordingly, the cholesterol–protein interface is central to cholesterol-related diseases and is an essential consideration in drug design. However, cholesterol’s hydrophobic, un-drug-like nature presents a unique challenge to traditional <i>in silico</i> analyses. In this Perspective, we survey a collection of tools designed to predict and evaluate cholesterol binding sites in proteins, including classical sequence motifs, molecular docking, template-based strategies, molecular dynamics simulations, and recent artificial intelligence approaches. We then comment on contemporary tools to evaluate ligand–protein interactions, their applicability to cholesterol, and the yet-untapped potential of cholesterol–protein interactions in human health and disease.","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":"8 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.jmedchem.4c01885","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cholesterol is structurally distinct from other lipids, which confers it with singular roles in membrane organization and protein function. As a signaling molecule, cholesterol engages in discrete interactions with transmembrane, peripheral, and certain soluble proteins to control cellular responses. Accordingly, the cholesterol–protein interface is central to cholesterol-related diseases and is an essential consideration in drug design. However, cholesterol’s hydrophobic, un-drug-like nature presents a unique challenge to traditional in silico analyses. In this Perspective, we survey a collection of tools designed to predict and evaluate cholesterol binding sites in proteins, including classical sequence motifs, molecular docking, template-based strategies, molecular dynamics simulations, and recent artificial intelligence approaches. We then comment on contemporary tools to evaluate ligand–protein interactions, their applicability to cholesterol, and the yet-untapped potential of cholesterol–protein interactions in human health and disease.
期刊介绍:
The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents.
The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.