Using large language models to estimate features of multi-word expressions: Concreteness, valence, arousal.

IF 4.6 2区 心理学 Q1 PSYCHOLOGY, EXPERIMENTAL Behavior Research Methods Pub Date : 2024-12-04 DOI:10.3758/s13428-024-02515-z
Gonzalo Martínez, Juan Diego Molero, Sandra González, Javier Conde, Marc Brysbaert, Pedro Reviriego
{"title":"Using large language models to estimate features of multi-word expressions: Concreteness, valence, arousal.","authors":"Gonzalo Martínez, Juan Diego Molero, Sandra González, Javier Conde, Marc Brysbaert, Pedro Reviriego","doi":"10.3758/s13428-024-02515-z","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the potential of large language models (LLMs) to provide accurate estimates of concreteness, valence, and arousal for multi-word expressions. Unlike previous artificial intelligence (AI) methods, LLMs can capture the nuanced meanings of multi-word expressions. We systematically evaluated GPT-4o's ability to predict concreteness, valence, and arousal. In Study 1, GPT-4o showed strong correlations with human concreteness ratings (r = .8) for multi-word expressions. In Study 2, these findings were repeated for valence and arousal ratings of individual words, matching or outperforming previous AI models. Studies 3-5 extended the valence and arousal analysis to multi-word expressions and showed good validity of the LLM-generated estimates for these stimuli as well. To help researchers with stimulus selection, we provide datasets with LLM-generated norms of concreteness, valence, and arousal for 126,397 English single words and 63,680 multi-word expressions.</p>","PeriodicalId":8717,"journal":{"name":"Behavior Research Methods","volume":"57 1","pages":"5"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavior Research Methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3758/s13428-024-02515-z","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the potential of large language models (LLMs) to provide accurate estimates of concreteness, valence, and arousal for multi-word expressions. Unlike previous artificial intelligence (AI) methods, LLMs can capture the nuanced meanings of multi-word expressions. We systematically evaluated GPT-4o's ability to predict concreteness, valence, and arousal. In Study 1, GPT-4o showed strong correlations with human concreteness ratings (r = .8) for multi-word expressions. In Study 2, these findings were repeated for valence and arousal ratings of individual words, matching or outperforming previous AI models. Studies 3-5 extended the valence and arousal analysis to multi-word expressions and showed good validity of the LLM-generated estimates for these stimuli as well. To help researchers with stimulus selection, we provide datasets with LLM-generated norms of concreteness, valence, and arousal for 126,397 English single words and 63,680 multi-word expressions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用大型语言模型估计多词表达的特征:具体性、效价、唤起。
本研究探讨了大型语言模型(llm)的潜力,以提供对多词表达的具体、价态和唤醒的准确估计。与以前的人工智能(AI)方法不同,法学硕士可以捕捉多词表达的细微含义。我们系统地评估了gpt - 40预测具体性、效价和觉醒的能力。在研究1中,gpt - 40与人类多词表达的具体程度评分有很强的相关性(r = .8)。在研究2中,这些发现被重复用于单个单词的效价和唤醒评级,匹配或优于之前的人工智能模型。研究3-5将效价和唤醒分析扩展到多词表达,并显示llm生成的估计对这些刺激也具有良好的有效性。为了帮助研究人员进行刺激选择,我们提供了包含llm生成的126,397个英语单字和63,680个多字表达的具体、效价和唤醒规范的数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.30
自引率
9.30%
发文量
266
期刊介绍: Behavior Research Methods publishes articles concerned with the methods, techniques, and instrumentation of research in experimental psychology. The journal focuses particularly on the use of computer technology in psychological research. An annual special issue is devoted to this field.
期刊最新文献
Testing for group differences in multilevel vector autoregressive models. Distribution-free Bayesian analyses with the DFBA statistical package. Jiwar: A database and calculator for word neighborhood measures in 40 languages. Open-access network science: Investigating phonological similarity networks based on the SUBTLEX-US lexicon. Survey measures of metacognitive monitoring are often false.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1