Enhanced Activity in Benzyl Alcohol Oxidation via Nitrogen-Doped Carbon-Supported Ultrahigh Dispersion of Iron Atom Catalysts

IF 3.8 3区 工程技术 Q2 ENGINEERING, CHEMICAL Industrial & Engineering Chemistry Research Pub Date : 2024-12-19 DOI:10.1021/acs.iecr.4c03656
Fan Xue, Shangpu Zhuang, Jingyue Bi, Mifen Cui, Zhaoyang Fei, Xu Qiao
{"title":"Enhanced Activity in Benzyl Alcohol Oxidation via Nitrogen-Doped Carbon-Supported Ultrahigh Dispersion of Iron Atom Catalysts","authors":"Fan Xue, Shangpu Zhuang, Jingyue Bi, Mifen Cui, Zhaoyang Fei, Xu Qiao","doi":"10.1021/acs.iecr.4c03656","DOIUrl":null,"url":null,"abstract":"The selective oxidation of benzyl alcohol to benzaldehyde is currently difficult to achieve with high benzyl alcohol conversion and high benzaldehyde selectivity simultaneously under mild conditions. Herein, the Fe-based catalysts anchored on nitrogen-doped carbon (<i>x</i>-Fe/NC) were prepared by thermal decomposition of the iron-doped zeolitic imidazolate framework precursors (<i>x</i>-Fe-ZIF). Among the various catalysts with different iron contents (<i>x</i>-Fe/NC), the 2-Fe/NC catalyst showed the best balance of conversion and selectivity, achieving 96.0% conversion of benzyl alcohol and around 98.0% selectivity for benzaldehyde. A range of characterization methods combined with kinetic analysis demonstrated that the high catalytic activity was attributed to the formed Fe–N<sub><i>x</i></sub> active sites, which can accelerate the adsorption process of reactant molecules, facilitating the oxidation process while minimizing overoxidation to carboxylic acids. Moreover, the 2-Fe/NC catalyst showed excellent recyclability and substrate resistance, indicating its stability and potential for industrial application. This study offers fresh perspectives on the synthesis of effective transition metal-based catalysts and explores their potential applications in organic oxidation reactions.","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"20 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acs.iecr.4c03656","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The selective oxidation of benzyl alcohol to benzaldehyde is currently difficult to achieve with high benzyl alcohol conversion and high benzaldehyde selectivity simultaneously under mild conditions. Herein, the Fe-based catalysts anchored on nitrogen-doped carbon (x-Fe/NC) were prepared by thermal decomposition of the iron-doped zeolitic imidazolate framework precursors (x-Fe-ZIF). Among the various catalysts with different iron contents (x-Fe/NC), the 2-Fe/NC catalyst showed the best balance of conversion and selectivity, achieving 96.0% conversion of benzyl alcohol and around 98.0% selectivity for benzaldehyde. A range of characterization methods combined with kinetic analysis demonstrated that the high catalytic activity was attributed to the formed Fe–Nx active sites, which can accelerate the adsorption process of reactant molecules, facilitating the oxidation process while minimizing overoxidation to carboxylic acids. Moreover, the 2-Fe/NC catalyst showed excellent recyclability and substrate resistance, indicating its stability and potential for industrial application. This study offers fresh perspectives on the synthesis of effective transition metal-based catalysts and explores their potential applications in organic oxidation reactions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Industrial & Engineering Chemistry Research
Industrial & Engineering Chemistry Research 工程技术-工程:化工
CiteScore
7.40
自引率
7.10%
发文量
1467
审稿时长
2.8 months
期刊介绍: ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.
期刊最新文献
Enhancing Reactive Microemulsion Processes: Dynamic Optimization and Cyclic Semibatch Operation for the Reductive Amination of Undecanal in a Mini-Plant Effect of the Synthesis and Post-Treatment of Twin-Crystal ZSM-5 Zeolites on Their VOCs Adsorption Performance Technoeconomic Analysis of the Electrorefining Process for Copper and Carbon Removal from Scrap Steel for Green Steelmaking Enhanced Activity in Benzyl Alcohol Oxidation via Nitrogen-Doped Carbon-Supported Ultrahigh Dispersion of Iron Atom Catalysts Generalized Global Self-Optimizing Control for Chemical Processes: Part II Objective-Guided Controlled Variable Learning Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1