A deep architecture based on attention mechanisms for effective end-to-end detection of early and mature malaria parasites in a realistic scenario.

IF 7 2区 医学 Q1 BIOLOGY Computers in biology and medicine Pub Date : 2025-03-01 Epub Date: 2025-01-26 DOI:10.1016/j.compbiomed.2025.109704
Luca Zedda, Andrea Loddo, Cecilia Di Ruberto
{"title":"A deep architecture based on attention mechanisms for effective end-to-end detection of early and mature malaria parasites in a realistic scenario.","authors":"Luca Zedda, Andrea Loddo, Cecilia Di Ruberto","doi":"10.1016/j.compbiomed.2025.109704","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Malaria is a critical and potentially fatal disease caused by the Plasmodium parasite and is responsible for more than 600,000 deaths globally. Early and accurate detection of malaria parasites is crucial for effective treatment, yet conventional microscopy faces limitations in variability and efficiency.</p><p><strong>Methods: </strong>We propose a novel computer-aided detection framework based on deep learning and attention mechanisms, extending the YOLO-SPAM and YOLO-PAM models. Our approach facilitates the detection and classification of malaria parasites across all infection stages and supports multi-species identification.</p><p><strong>Results: </strong>The framework was evaluated on three publicly available datasets, demonstrating high accuracy in detecting four distinct malaria species and their life stages. Comparative analysis against state-of-the-art methodologies indicates significant improvements in both detection rates and diagnostic utility.</p><p><strong>Conclusion: </strong>This study presents a robust solution for automated malaria detection, offering valuable support for pathologists and enhancing diagnostic practices in real-world scenarios.</p>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"186 ","pages":"109704"},"PeriodicalIF":7.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.compbiomed.2025.109704","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Malaria is a critical and potentially fatal disease caused by the Plasmodium parasite and is responsible for more than 600,000 deaths globally. Early and accurate detection of malaria parasites is crucial for effective treatment, yet conventional microscopy faces limitations in variability and efficiency.

Methods: We propose a novel computer-aided detection framework based on deep learning and attention mechanisms, extending the YOLO-SPAM and YOLO-PAM models. Our approach facilitates the detection and classification of malaria parasites across all infection stages and supports multi-species identification.

Results: The framework was evaluated on three publicly available datasets, demonstrating high accuracy in detecting four distinct malaria species and their life stages. Comparative analysis against state-of-the-art methodologies indicates significant improvements in both detection rates and diagnostic utility.

Conclusion: This study presents a robust solution for automated malaria detection, offering valuable support for pathologists and enhancing diagnostic practices in real-world scenarios.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
期刊最新文献
Brain tumour histopathology through the lens of deep learning: A systematic review. Detection, identification and removing of artifacts from sEMG signals: Current studies and future challenges. TinyML and edge intelligence applications in cardiovascular disease: A survey. A comprehensive scoping review on machine learning-based fetal echocardiography analysis. A semi-automated tool for digital and mechanical articulators comparative analysis of condylar path elements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1