Impact of Oxidative Stress and Neuroinflammation on Sarco/Endoplasmic Reticulum Ca2+-ATPase 2b Downregulation and Endoplasmic Reticulum Stress in Temporal Lobe Epilepsy

Vikas Yadav, Sudipta Nayak, Sandeep Guin and Awanish Mishra*, 
{"title":"Impact of Oxidative Stress and Neuroinflammation on Sarco/Endoplasmic Reticulum Ca2+-ATPase 2b Downregulation and Endoplasmic Reticulum Stress in Temporal Lobe Epilepsy","authors":"Vikas Yadav,&nbsp;Sudipta Nayak,&nbsp;Sandeep Guin and Awanish Mishra*,&nbsp;","doi":"10.1021/acsptsci.4c0055610.1021/acsptsci.4c00556","DOIUrl":null,"url":null,"abstract":"<p >Epilepsy is one of the most common neurological disorders. Calcium dysregulation and neuroinflammation are essential and common mechanisms in epileptogenesis. Sarco/endoplasmic reticulum (ER) Ca<sup>2+</sup>-ATPase 2b (SERCA2b), a crucial calcium regulatory pump, plays pathological roles in various calcium dysregulation-related diseases. However, the link between SERCA2b and neuroinflammation in epilepsy remains undetermined. This study aimed to establish the relationship between SERCA2b, oxidative stress, and neuroinflammation in epilepsy to elucidate the underlying molecular mechanism in epileptogenesis. Neuroinflammation and oxidative stress were induced in N2a cells using lipopolysaccharide (LPS) and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>). However, experimental temporal lobe epilepsy (TLE) was induced in mice using pilocarpine. Further, effects of oxidative stress and neuroinflammation on SERCA2b and ER stress markers were assessed at protein and mRNA levels. Calcium imaging was employed to determine intracellular calcium levels. SERCA2b expression significantly decreased after LPS, H<sub>2</sub>O<sub>2</sub>, and pilocarpine exposure at both mRNA and protein levels, mediated by upregulating neuroinflammation. This downregulation of SERCA2b was associated with increased production of reactive oxygen species and elevated intracellular calcium levels, leading to elevated ER stress markers. Our findings highlight a link between oxidative stress, neuroinflammation and SERCA2b in TLE. The results suggest that targeting SERCA2b could restore calcium homeostasis and ER stress processes, potentially providing a therapeutic option for TLE. This study underscores the importance of SERCA2b in the pathophysiology of epilepsy and its potential as a therapeutic target.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"8 1","pages":"173–188 173–188"},"PeriodicalIF":4.9000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Pharmacology and Translational Science","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsptsci.4c00556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Epilepsy is one of the most common neurological disorders. Calcium dysregulation and neuroinflammation are essential and common mechanisms in epileptogenesis. Sarco/endoplasmic reticulum (ER) Ca2+-ATPase 2b (SERCA2b), a crucial calcium regulatory pump, plays pathological roles in various calcium dysregulation-related diseases. However, the link between SERCA2b and neuroinflammation in epilepsy remains undetermined. This study aimed to establish the relationship between SERCA2b, oxidative stress, and neuroinflammation in epilepsy to elucidate the underlying molecular mechanism in epileptogenesis. Neuroinflammation and oxidative stress were induced in N2a cells using lipopolysaccharide (LPS) and hydrogen peroxide (H2O2). However, experimental temporal lobe epilepsy (TLE) was induced in mice using pilocarpine. Further, effects of oxidative stress and neuroinflammation on SERCA2b and ER stress markers were assessed at protein and mRNA levels. Calcium imaging was employed to determine intracellular calcium levels. SERCA2b expression significantly decreased after LPS, H2O2, and pilocarpine exposure at both mRNA and protein levels, mediated by upregulating neuroinflammation. This downregulation of SERCA2b was associated with increased production of reactive oxygen species and elevated intracellular calcium levels, leading to elevated ER stress markers. Our findings highlight a link between oxidative stress, neuroinflammation and SERCA2b in TLE. The results suggest that targeting SERCA2b could restore calcium homeostasis and ER stress processes, potentially providing a therapeutic option for TLE. This study underscores the importance of SERCA2b in the pathophysiology of epilepsy and its potential as a therapeutic target.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Pharmacology and Translational Science
ACS Pharmacology and Translational Science Medicine-Pharmacology (medical)
CiteScore
10.00
自引率
3.30%
发文量
133
期刊介绍: ACS Pharmacology & Translational Science publishes high quality, innovative, and impactful research across the broad spectrum of biological sciences, covering basic and molecular sciences through to translational preclinical studies. Clinical studies that address novel mechanisms of action, and methodological papers that provide innovation, and advance translation, will also be considered. We give priority to studies that fully integrate basic pharmacological and/or biochemical findings into physiological processes that have translational potential in a broad range of biomedical disciplines. Therefore, studies that employ a complementary blend of in vitro and in vivo systems are of particular interest to the journal. Nonetheless, all innovative and impactful research that has an articulated translational relevance will be considered. ACS Pharmacology & Translational Science does not publish research on biological extracts that have unknown concentration or unknown chemical composition. Authors are encouraged to use the pre-submission inquiry mechanism to ensure relevance and appropriateness of research.
期刊最新文献
Issue Publication Information Issue Editorial Masthead A Bioanalytical Liquid Chromatography Tandem Mass Spectrometry Approach for the Quantification of a Novel Antisense Oligonucleotide Designed for Parkinson's Disease: A Rat Brain Biodistribution Study. Natural and Synthetic LDL-Based Imaging Probes for the Detection of Atherosclerotic Plaques Alcohol Consumption Modulates the Development of Chronic Pain in COVID-19 Patients: A Network Meta-Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1