Molecular and Immunological Properties of a Chimeric Glycosyl Hydrolase 18 Based on Immunoinformatics Approaches: A Design of a New Anti-Leishmania Vaccine

José Ednésio da Cruz Freire*, André Nogueira Cardeal dos Santos, Andrelina Noronha Coelho de Souza, Ariclécio Cunha de Oliveira, Roberto Nicolete, Bruno Lopes de Sousa, João Hermínio Martins da Silva, Yuri de Abreu Gomes Vasconcelos, Isaac Neto Goes da Silva, Paula Matias Soares, Maria Izabel Florindo Guedes and Vânia Marilande Ceccatto, 
{"title":"Molecular and Immunological Properties of a Chimeric Glycosyl Hydrolase 18 Based on Immunoinformatics Approaches: A Design of a New Anti-Leishmania Vaccine","authors":"José Ednésio da\r\nCruz Freire*,&nbsp;André Nogueira Cardeal dos Santos,&nbsp;Andrelina Noronha Coelho de Souza,&nbsp;Ariclécio Cunha de Oliveira,&nbsp;Roberto Nicolete,&nbsp;Bruno Lopes de Sousa,&nbsp;João Hermínio Martins da Silva,&nbsp;Yuri de Abreu Gomes Vasconcelos,&nbsp;Isaac Neto Goes da Silva,&nbsp;Paula Matias Soares,&nbsp;Maria Izabel Florindo Guedes and Vânia Marilande Ceccatto,&nbsp;","doi":"10.1021/acsptsci.4c0034110.1021/acsptsci.4c00341","DOIUrl":null,"url":null,"abstract":"<p >Leishmaniasis is a chronic inflammatory zoonotic illness caused by protozoan flagellates belonging to the <i>Leishmania</i> genus. Current data suggest that over 1 billion people worldwide are susceptible to infection, primarily in tropical and subtropical countries, where up to 2 million new cases are reported annually. Therefore, the development of a vaccine is crucial to combating this disease. This study employed immunoinformatics approaches to design a multiepitope anti-<i>Leishmania</i> vaccine, GH<sub>18</sub>-cp<i>Leish</i>, based on a cluster of six glycosyl hydrolases 18. We identified six helper T lymphocyte (HTL) epitopes and twenty-six cytotoxic T lymphocyte (CTL) epitopes with IC<sub>50</sub> values &lt;50 nM, indicating high affinity. Additionally, we also identified 20 continuous and twenty-six discontinuous B-cell epitopes. Analysis for allergenicity and toxicity showed no potential to induce these phenomena. All data obtained from in silico tools suggest that physicochemical and biological studies indicate that the GH<sub>18</sub>-cp<i>Leish</i> chimeric protein is a promising candidate for an anti-<i>Leishmania</i> vaccine. Docking analysis showed that the Pep<sub>1</sub>-cp<i>Leish</i>::TLR<sub>1</sub>, Pep<sub>1</sub>-cp<i>Leish</i>::TLR<sub>2</sub>, Pep<sub>1</sub>-cp<i>Leish</i>::/TLR<sub>3</sub>, and Pep<sub>1</sub>-cp<i>Leish</i>::/TLR<sub>4</sub> complexes maintained a stable form. The best interaction cluster score was observed in the complex Pep<sub>1</sub>-cp<i>Leish</i>::TLR<sub>2</sub> (center = −622.6 and lowest energy = −841.7 kcal.mol<sup>–1</sup>) followed by the complexes Pep<sub>1</sub>-cp<i>Leish</i>::TLR<sub>4</sub> (center = −590.3 and lowest energy = −590.3 kcal.mol<sup>–1</sup>), Pep<sub>1</sub>-cp<i>Leish</i>::TLR<sub>3</sub> (center = −589.1 and lowest energy = −657.0 kcal.mol<sup>–1</sup>), and Pep<sub>1</sub>-cp<i>Leish</i>::TLR<sub>1</sub> (center = −504.1 and lowest energy = −602.9 kcal.mol<sup>–1</sup>), respectively. This study suggests that GH<sub>18</sub>-cp<i>Leish</i> may be suitable for constructing second-generation anti-<i>Leishmania</i> and even third-generation vaccines, given that its gene sequence is optimized for this purpose.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"8 1","pages":"78–96 78–96"},"PeriodicalIF":4.9000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsptsci.4c00341","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Pharmacology and Translational Science","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsptsci.4c00341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Leishmaniasis is a chronic inflammatory zoonotic illness caused by protozoan flagellates belonging to the Leishmania genus. Current data suggest that over 1 billion people worldwide are susceptible to infection, primarily in tropical and subtropical countries, where up to 2 million new cases are reported annually. Therefore, the development of a vaccine is crucial to combating this disease. This study employed immunoinformatics approaches to design a multiepitope anti-Leishmania vaccine, GH18-cpLeish, based on a cluster of six glycosyl hydrolases 18. We identified six helper T lymphocyte (HTL) epitopes and twenty-six cytotoxic T lymphocyte (CTL) epitopes with IC50 values <50 nM, indicating high affinity. Additionally, we also identified 20 continuous and twenty-six discontinuous B-cell epitopes. Analysis for allergenicity and toxicity showed no potential to induce these phenomena. All data obtained from in silico tools suggest that physicochemical and biological studies indicate that the GH18-cpLeish chimeric protein is a promising candidate for an anti-Leishmania vaccine. Docking analysis showed that the Pep1-cpLeish::TLR1, Pep1-cpLeish::TLR2, Pep1-cpLeish::/TLR3, and Pep1-cpLeish::/TLR4 complexes maintained a stable form. The best interaction cluster score was observed in the complex Pep1-cpLeish::TLR2 (center = −622.6 and lowest energy = −841.7 kcal.mol–1) followed by the complexes Pep1-cpLeish::TLR4 (center = −590.3 and lowest energy = −590.3 kcal.mol–1), Pep1-cpLeish::TLR3 (center = −589.1 and lowest energy = −657.0 kcal.mol–1), and Pep1-cpLeish::TLR1 (center = −504.1 and lowest energy = −602.9 kcal.mol–1), respectively. This study suggests that GH18-cpLeish may be suitable for constructing second-generation anti-Leishmania and even third-generation vaccines, given that its gene sequence is optimized for this purpose.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Pharmacology and Translational Science
ACS Pharmacology and Translational Science Medicine-Pharmacology (medical)
CiteScore
10.00
自引率
3.30%
发文量
133
期刊介绍: ACS Pharmacology & Translational Science publishes high quality, innovative, and impactful research across the broad spectrum of biological sciences, covering basic and molecular sciences through to translational preclinical studies. Clinical studies that address novel mechanisms of action, and methodological papers that provide innovation, and advance translation, will also be considered. We give priority to studies that fully integrate basic pharmacological and/or biochemical findings into physiological processes that have translational potential in a broad range of biomedical disciplines. Therefore, studies that employ a complementary blend of in vitro and in vivo systems are of particular interest to the journal. Nonetheless, all innovative and impactful research that has an articulated translational relevance will be considered. ACS Pharmacology & Translational Science does not publish research on biological extracts that have unknown concentration or unknown chemical composition. Authors are encouraged to use the pre-submission inquiry mechanism to ensure relevance and appropriateness of research.
期刊最新文献
Issue Publication Information Issue Editorial Masthead A Bioanalytical Liquid Chromatography Tandem Mass Spectrometry Approach for the Quantification of a Novel Antisense Oligonucleotide Designed for Parkinson's Disease: A Rat Brain Biodistribution Study. Natural and Synthetic LDL-Based Imaging Probes for the Detection of Atherosclerotic Plaques Alcohol Consumption Modulates the Development of Chronic Pain in COVID-19 Patients: A Network Meta-Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1