Targeting and reprogramming microglial phagocytosis of neutrophils by ginsenoside Rg1 nanovesicles promotes stroke recovery

IF 18 1区 医学 Q1 ENGINEERING, BIOMEDICAL Bioactive Materials Pub Date : 2025-01-22 DOI:10.1016/j.bioactmat.2025.01.017
Kaichao Hu , Junrui Ye , Pinglong Fan , Ruifang Zheng , Shasha Wang , Ye Peng , Yuan Ruan , Xu Yan , Zhao Zhang , Shifeng Chu , Naihong Chen
{"title":"Targeting and reprogramming microglial phagocytosis of neutrophils by ginsenoside Rg1 nanovesicles promotes stroke recovery","authors":"Kaichao Hu ,&nbsp;Junrui Ye ,&nbsp;Pinglong Fan ,&nbsp;Ruifang Zheng ,&nbsp;Shasha Wang ,&nbsp;Ye Peng ,&nbsp;Yuan Ruan ,&nbsp;Xu Yan ,&nbsp;Zhao Zhang ,&nbsp;Shifeng Chu ,&nbsp;Naihong Chen","doi":"10.1016/j.bioactmat.2025.01.017","DOIUrl":null,"url":null,"abstract":"<div><div>Stroke remains one of the leading causes of adult disability worldwide, with neovascularization is crucial for brain repair after stroke. However, neutrophil infiltration hinders effective neovascularization, necessitating timely clearance by microglia through phagocytosis. Unfortunately, microglial phagocytic function is often impaired by metabolic defects, hindering post-stroke recovery. Ginsenoside Rg1, derived from Panax ginseng, exhibits neuroprotective properties and regulates cellular metabolism <em>in vitro</em> but its therapeutic application is limited by poor brain penetration. Here, we present a targeted delivery system utilizing neutrophil-like cell membrane vesicles (NCM), prepared via nitrogen cavitation, to enhance Rg1 delivery to the brain. These biomimetic vesicles exploit the inherent targeting ability of neutrophil membranes to reach brain injury sites and are subsequently taken up by microglia. Our findings demonstrate that Rg1-loaded vesicles enhance microglial clearance of neutrophils, reduce neutrophil extracellular traps release, and mitigate tissue damage. These effects improve the post-stroke microenvironment, promote vascular remodeling, and ultimately contribute to functional recovery. This strategy highlights the potential of targeted reprogramming microglial cells to enhance their endogenous repair capabilities, offering a promising therapeutic avenue for ischemic stroke management.</div></div>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"47 ","pages":"Pages 181-197"},"PeriodicalIF":18.0000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452199X25000179","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Stroke remains one of the leading causes of adult disability worldwide, with neovascularization is crucial for brain repair after stroke. However, neutrophil infiltration hinders effective neovascularization, necessitating timely clearance by microglia through phagocytosis. Unfortunately, microglial phagocytic function is often impaired by metabolic defects, hindering post-stroke recovery. Ginsenoside Rg1, derived from Panax ginseng, exhibits neuroprotective properties and regulates cellular metabolism in vitro but its therapeutic application is limited by poor brain penetration. Here, we present a targeted delivery system utilizing neutrophil-like cell membrane vesicles (NCM), prepared via nitrogen cavitation, to enhance Rg1 delivery to the brain. These biomimetic vesicles exploit the inherent targeting ability of neutrophil membranes to reach brain injury sites and are subsequently taken up by microglia. Our findings demonstrate that Rg1-loaded vesicles enhance microglial clearance of neutrophils, reduce neutrophil extracellular traps release, and mitigate tissue damage. These effects improve the post-stroke microenvironment, promote vascular remodeling, and ultimately contribute to functional recovery. This strategy highlights the potential of targeted reprogramming microglial cells to enhance their endogenous repair capabilities, offering a promising therapeutic avenue for ischemic stroke management.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioactive Materials
Bioactive Materials Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍: Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms. The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms. The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials: Bioactive metals and alloys Bioactive inorganics: ceramics, glasses, and carbon-based materials Bioactive polymers and gels Bioactive materials derived from natural sources Bioactive composites These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.
期刊最新文献
Microenvironment-responsive coating for vascular stents to regulate coagulation-inflammation interaction and promote vascular recovery Living joint prosthesis with in-situ tissue engineering for real-time and long-term osteoarticular reconstruction In situ UNIversal Orthogonal Network (UNION) bioink deposition for direct delivery of corneal stromal stem cells to corneal wounds Precision repair of zone-specific meniscal injuries using a tunable extracellular matrix-based hydrogel system 4D printing polymeric biomaterials for adaptive tissue regeneration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1