Kaichao Hu , Junrui Ye , Pinglong Fan , Ruifang Zheng , Shasha Wang , Ye Peng , Yuan Ruan , Xu Yan , Zhao Zhang , Shifeng Chu , Naihong Chen
{"title":"Targeting and reprogramming microglial phagocytosis of neutrophils by ginsenoside Rg1 nanovesicles promotes stroke recovery","authors":"Kaichao Hu , Junrui Ye , Pinglong Fan , Ruifang Zheng , Shasha Wang , Ye Peng , Yuan Ruan , Xu Yan , Zhao Zhang , Shifeng Chu , Naihong Chen","doi":"10.1016/j.bioactmat.2025.01.017","DOIUrl":null,"url":null,"abstract":"<div><div>Stroke remains one of the leading causes of adult disability worldwide, with neovascularization is crucial for brain repair after stroke. However, neutrophil infiltration hinders effective neovascularization, necessitating timely clearance by microglia through phagocytosis. Unfortunately, microglial phagocytic function is often impaired by metabolic defects, hindering post-stroke recovery. Ginsenoside Rg1, derived from Panax ginseng, exhibits neuroprotective properties and regulates cellular metabolism <em>in vitro</em> but its therapeutic application is limited by poor brain penetration. Here, we present a targeted delivery system utilizing neutrophil-like cell membrane vesicles (NCM), prepared via nitrogen cavitation, to enhance Rg1 delivery to the brain. These biomimetic vesicles exploit the inherent targeting ability of neutrophil membranes to reach brain injury sites and are subsequently taken up by microglia. Our findings demonstrate that Rg1-loaded vesicles enhance microglial clearance of neutrophils, reduce neutrophil extracellular traps release, and mitigate tissue damage. These effects improve the post-stroke microenvironment, promote vascular remodeling, and ultimately contribute to functional recovery. This strategy highlights the potential of targeted reprogramming microglial cells to enhance their endogenous repair capabilities, offering a promising therapeutic avenue for ischemic stroke management.</div></div>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"47 ","pages":"Pages 181-197"},"PeriodicalIF":18.0000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452199X25000179","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Stroke remains one of the leading causes of adult disability worldwide, with neovascularization is crucial for brain repair after stroke. However, neutrophil infiltration hinders effective neovascularization, necessitating timely clearance by microglia through phagocytosis. Unfortunately, microglial phagocytic function is often impaired by metabolic defects, hindering post-stroke recovery. Ginsenoside Rg1, derived from Panax ginseng, exhibits neuroprotective properties and regulates cellular metabolism in vitro but its therapeutic application is limited by poor brain penetration. Here, we present a targeted delivery system utilizing neutrophil-like cell membrane vesicles (NCM), prepared via nitrogen cavitation, to enhance Rg1 delivery to the brain. These biomimetic vesicles exploit the inherent targeting ability of neutrophil membranes to reach brain injury sites and are subsequently taken up by microglia. Our findings demonstrate that Rg1-loaded vesicles enhance microglial clearance of neutrophils, reduce neutrophil extracellular traps release, and mitigate tissue damage. These effects improve the post-stroke microenvironment, promote vascular remodeling, and ultimately contribute to functional recovery. This strategy highlights the potential of targeted reprogramming microglial cells to enhance their endogenous repair capabilities, offering a promising therapeutic avenue for ischemic stroke management.
Bioactive MaterialsBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍:
Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms.
The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms.
The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials:
Bioactive metals and alloys
Bioactive inorganics: ceramics, glasses, and carbon-based materials
Bioactive polymers and gels
Bioactive materials derived from natural sources
Bioactive composites
These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.