Heterogeneous graph representation learning via mutual information estimation for fraud detection

IF 7.7 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Journal of Network and Computer Applications Pub Date : 2025-02-01 DOI:10.1016/j.jnca.2024.104046
Zheng Zhang , Xiangyu Su , Ji Wu , Claudio J. Tessone , Hao Liao
{"title":"Heterogeneous graph representation learning via mutual information estimation for fraud detection","authors":"Zheng Zhang ,&nbsp;Xiangyu Su ,&nbsp;Ji Wu ,&nbsp;Claudio J. Tessone ,&nbsp;Hao Liao","doi":"10.1016/j.jnca.2024.104046","DOIUrl":null,"url":null,"abstract":"<div><div>In the fraud detection, fraudsters frequently engage with numerous benign users to disguise their activities. Consequently, the fraud graph exhibits not only homogeneous connections between the fraudsters and the same labeled nodes, but also heterogeneous connections, where fraudsters interact with the legitimate nodes. Heterogeneous graph representation learning aims at extracting the structural and semantic information and embed it into the low-dimensional node representation. Recently, maximizing the mutual information between the local node embedding and the summary representation has achieved the promising results on node classification tasks. However, existing deep graph infomax methods still have the following limitations. Firstly, attribute information of nodes in the graph is not fully utilized for capturing the semantic relationships between nodes. Secondly, the local and global supervision signal are not simultaneously exploited for the node embedding learning. Thirdly, the multiplex heterogeneous relations among nodes are ignored. To address these issues, a heterogeneous graph representation learning model by mutual information estimation (MIE-HetGRL) is proposed in this paper to identify the fraudsters in the fraud review graph. Concretely, a high-order mutual information estimation is proposed to integrate the local and global mutual information as the supervision signal. Then we devise a semantic attention fusion module to aggregate the relation-aware node embeddings into a compact node representation. Finally, a joint contrastive learning is designed for facilitating the training and optimization of model. The experimental results show that our proposed model significantly outperforms state-of-the-art baselines for fraud detection.</div></div>","PeriodicalId":54784,"journal":{"name":"Journal of Network and Computer Applications","volume":"234 ","pages":"Article 104046"},"PeriodicalIF":7.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Network and Computer Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1084804524002236","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

In the fraud detection, fraudsters frequently engage with numerous benign users to disguise their activities. Consequently, the fraud graph exhibits not only homogeneous connections between the fraudsters and the same labeled nodes, but also heterogeneous connections, where fraudsters interact with the legitimate nodes. Heterogeneous graph representation learning aims at extracting the structural and semantic information and embed it into the low-dimensional node representation. Recently, maximizing the mutual information between the local node embedding and the summary representation has achieved the promising results on node classification tasks. However, existing deep graph infomax methods still have the following limitations. Firstly, attribute information of nodes in the graph is not fully utilized for capturing the semantic relationships between nodes. Secondly, the local and global supervision signal are not simultaneously exploited for the node embedding learning. Thirdly, the multiplex heterogeneous relations among nodes are ignored. To address these issues, a heterogeneous graph representation learning model by mutual information estimation (MIE-HetGRL) is proposed in this paper to identify the fraudsters in the fraud review graph. Concretely, a high-order mutual information estimation is proposed to integrate the local and global mutual information as the supervision signal. Then we devise a semantic attention fusion module to aggregate the relation-aware node embeddings into a compact node representation. Finally, a joint contrastive learning is designed for facilitating the training and optimization of model. The experimental results show that our proposed model significantly outperforms state-of-the-art baselines for fraud detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Network and Computer Applications
Journal of Network and Computer Applications 工程技术-计算机:跨学科应用
CiteScore
21.50
自引率
3.40%
发文量
142
审稿时长
37 days
期刊介绍: The Journal of Network and Computer Applications welcomes research contributions, surveys, and notes in all areas relating to computer networks and applications thereof. Sample topics include new design techniques, interesting or novel applications, components or standards; computer networks with tools such as WWW; emerging standards for internet protocols; Wireless networks; Mobile Computing; emerging computing models such as cloud computing, grid computing; applications of networked systems for remote collaboration and telemedicine, etc. The journal is abstracted and indexed in Scopus, Engineering Index, Web of Science, Science Citation Index Expanded and INSPEC.
期刊最新文献
Editorial Board DAPNEML: Disease-diet associations prediction in a NEtwork using a machine learning based approach A Comprehensive Survey of Smart Contracts Vulnerability Detection Tools: Techniques and Methodologies MuLPP: A multi-level privacy preserving for blockchain-based bilateral P2P energy trading PRISM: PSI and Voronoi diagram based Automated Exposure Notification with location privacy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1