Indirect evaluation of the influence of rock boulders in blasting to the geohazard: Unearthing geologic insights fused with tree seed based LSTM algorithm

Blessing Olamide Taiwo , Shahab Hosseini , Yewuhalashet Fissha , Kursat Kilic , Omosebi Akinwale Olusola , N. Sri Chandrahas , Enming Li , Adams Abiodun Akinlabi , Naseer Muhammad Khan
{"title":"Indirect evaluation of the influence of rock boulders in blasting to the geohazard: Unearthing geologic insights fused with tree seed based LSTM algorithm","authors":"Blessing Olamide Taiwo ,&nbsp;Shahab Hosseini ,&nbsp;Yewuhalashet Fissha ,&nbsp;Kursat Kilic ,&nbsp;Omosebi Akinwale Olusola ,&nbsp;N. Sri Chandrahas ,&nbsp;Enming Li ,&nbsp;Adams Abiodun Akinlabi ,&nbsp;Naseer Muhammad Khan","doi":"10.1016/j.ghm.2024.06.001","DOIUrl":null,"url":null,"abstract":"<div><div>Effective control of blasting outcomes depends on a thorough understanding of rock geology and the integration of geological characteristics with blast design parameters. This study underscores the importance of adapting blast design parameters to geological conditions to optimize the utilization of explosive energy for rock fragmentation. To achieve this, data on fifty geo-blast design parameters were collected and used to train machine learning algorithms. The objective was to develop predictive models for estimating the blast oversize percentage, incorporating seven controlled components and one uncontrollable index. The study employed a combination of hybrid long-short-term memory (LSTM), support vector regression, and random forest algorithms. Among these, the LSTM model enhanced with the tree seed algorithm (LSTM-TSA) demonstrated the highest prediction accuracy when handling large datasets. The LSTM-TSA soft computing model was specifically leveraged to optimize various blast parameters such as burden, spacing, stemming length, drill hole length, charge length, powder factor, and joint set number. The estimated percentage oversize values for these parameters were determined as 0.7 ​m, 0.9 ​m, 0.65 ​m, 1.4 ​m, 0.7 ​m, 1.03 ​kg/m<sup>3</sup>, 35 ​%, and 2, respectively. Application of the LSTM-TSA model resulted in a significant 28.1 ​% increase in the crusher's production rate, showcasing its effectiveness in improving blasting operations.</div></div>","PeriodicalId":100580,"journal":{"name":"Geohazard Mechanics","volume":"2 4","pages":"Pages 244-257"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geohazard Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949741824000505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Effective control of blasting outcomes depends on a thorough understanding of rock geology and the integration of geological characteristics with blast design parameters. This study underscores the importance of adapting blast design parameters to geological conditions to optimize the utilization of explosive energy for rock fragmentation. To achieve this, data on fifty geo-blast design parameters were collected and used to train machine learning algorithms. The objective was to develop predictive models for estimating the blast oversize percentage, incorporating seven controlled components and one uncontrollable index. The study employed a combination of hybrid long-short-term memory (LSTM), support vector regression, and random forest algorithms. Among these, the LSTM model enhanced with the tree seed algorithm (LSTM-TSA) demonstrated the highest prediction accuracy when handling large datasets. The LSTM-TSA soft computing model was specifically leveraged to optimize various blast parameters such as burden, spacing, stemming length, drill hole length, charge length, powder factor, and joint set number. The estimated percentage oversize values for these parameters were determined as 0.7 ​m, 0.9 ​m, 0.65 ​m, 1.4 ​m, 0.7 ​m, 1.03 ​kg/m3, 35 ​%, and 2, respectively. Application of the LSTM-TSA model resulted in a significant 28.1 ​% increase in the crusher's production rate, showcasing its effectiveness in improving blasting operations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial Board Optimization design method of 2D+3D slope shape for landslide prevention in open-pit coal mine Stability prediction of roadway surrounding rock using INGO-RF Leveraging artificial neural networks for robust landslide susceptibility mapping: A geospatial modeling approach in the ecologically sensitive Nilgiri District, Tamil Nadu Prediction of coal and gas outburst hazard using kernel principal component analysis and an enhanced extreme learning machine approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1