Judy M. Obliosca*, Olivia Vest, Dimpal Patel, Tammy Ferguson, Kelsi Smith, Dan Christy, Abigail Powers, Alicia K. Smith, Yang Xu and Christopher K. Tison,
{"title":"Surface Plasmon Resonance Imaging-Based Platform Enables Detection of Single, Site-Specific 5-Methylcytosine Associated with Post-traumatic Stress Disorder (PTSD)","authors":"Judy M. Obliosca*, Olivia Vest, Dimpal Patel, Tammy Ferguson, Kelsi Smith, Dan Christy, Abigail Powers, Alicia K. Smith, Yang Xu and Christopher K. Tison, ","doi":"10.1021/acsptsci.4c0062810.1021/acsptsci.4c00628","DOIUrl":null,"url":null,"abstract":"<p >While identification of epigenetic changes in individuals with psychiatric dysfunctions such as post-traumatic stress disorder (PTSD) is paramount to genomic research, there is no rapid and simplified way to detect an epigenetic marker such as DNA methylation in genes. Here, we introduce a faster, simpler method to detect methylation in the form of 5-methylcytosine (5mC, termed as PTSD-associated base) in known C<sub>p</sub>G sites using nanoenhanced surface plasmon resonance imaging-based epigenetic assay (EpiNanoSPRi). This assay platform simultaneously detects a panel of single, site-specific PTSD bases in target genes or regions using an anti-5mC antibody and a universal nanoenhancer on a gold-coated sensing chip. Not only can EpiNanoSPRi identify 5mC at the single-base level, but it also can quantify the extent of DNA methylation. Our method is superior and more practical to bisulfite-based DNA sequencing techniques as it will significantly reduce DNA methylation identification from 4 days (e.g., DNA Sequencing) to 9 h without massive analysis workflow. This platform can potentially be applied to diagnose other psychiatric disorders such as Alzheimer’s, Parkinson’s, dementia, schizophrenia, and Huntington’s diseases.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"8 2","pages":"522–532 522–532"},"PeriodicalIF":4.9000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Pharmacology and Translational Science","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsptsci.4c00628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
While identification of epigenetic changes in individuals with psychiatric dysfunctions such as post-traumatic stress disorder (PTSD) is paramount to genomic research, there is no rapid and simplified way to detect an epigenetic marker such as DNA methylation in genes. Here, we introduce a faster, simpler method to detect methylation in the form of 5-methylcytosine (5mC, termed as PTSD-associated base) in known CpG sites using nanoenhanced surface plasmon resonance imaging-based epigenetic assay (EpiNanoSPRi). This assay platform simultaneously detects a panel of single, site-specific PTSD bases in target genes or regions using an anti-5mC antibody and a universal nanoenhancer on a gold-coated sensing chip. Not only can EpiNanoSPRi identify 5mC at the single-base level, but it also can quantify the extent of DNA methylation. Our method is superior and more practical to bisulfite-based DNA sequencing techniques as it will significantly reduce DNA methylation identification from 4 days (e.g., DNA Sequencing) to 9 h without massive analysis workflow. This platform can potentially be applied to diagnose other psychiatric disorders such as Alzheimer’s, Parkinson’s, dementia, schizophrenia, and Huntington’s diseases.
期刊介绍:
ACS Pharmacology & Translational Science publishes high quality, innovative, and impactful research across the broad spectrum of biological sciences, covering basic and molecular sciences through to translational preclinical studies. Clinical studies that address novel mechanisms of action, and methodological papers that provide innovation, and advance translation, will also be considered. We give priority to studies that fully integrate basic pharmacological and/or biochemical findings into physiological processes that have translational potential in a broad range of biomedical disciplines. Therefore, studies that employ a complementary blend of in vitro and in vivo systems are of particular interest to the journal. Nonetheless, all innovative and impactful research that has an articulated translational relevance will be considered.
ACS Pharmacology & Translational Science does not publish research on biological extracts that have unknown concentration or unknown chemical composition.
Authors are encouraged to use the pre-submission inquiry mechanism to ensure relevance and appropriateness of research.