TROPOMI Satellite Data Reshape NO2 Air Pollution Land-Use Regression Modeling Capabilities in the United States

M. Omar Nawaz*, Daniel L. Goldberg, Gaige H. Kerr and Susan C. Anenberg, 
{"title":"TROPOMI Satellite Data Reshape NO2 Air Pollution Land-Use Regression Modeling Capabilities in the United States","authors":"M. Omar Nawaz*,&nbsp;Daniel L. Goldberg,&nbsp;Gaige H. Kerr and Susan C. Anenberg,&nbsp;","doi":"10.1021/acsestair.4c0015310.1021/acsestair.4c00153","DOIUrl":null,"url":null,"abstract":"<p >Nitrogen dioxide (NO<sub>2</sub>) pollution is associated with adverse health effects, but its spatial variability between ground monitors is poorly characterized. NO<sub>2</sub> column observations from the Tropospheric Monitoring Instrument (TROPOMI) have unprecedented spatial resolution and high accuracy over the globe. Land-use regression (LUR) models predict surface-level NO<sub>2</sub> with relevance for epidemiological and environmental justice studies. We use TROPOMI NO<sub>2</sub> columns in a land use regression (LUR) model to improve surface NO<sub>2</sub> concentration estimates over the United States. The TROPOMI LUR predictions have improved correlation with ground monitors (Adj. <i>R</i><sup>2</sup> = 0.72) and bias (Mean Bias, MB = 14.2%) compared with an existing LUR using less granular NO<sub>2</sub> data from a legacy satellite instrument (Adj. <i>R</i><sup>2</sup> = 0.54 and MB = 49%; for North America). Removing TROPOMI NO<sub>2</sub> from the LUR decreased <i>R</i><sup>2</sup> by 29.1%, 8.1 times the impact of removing road system information. These findings reveal that novel Earth observing satellites can enhance surface NO<sub>2</sub> surveillance by capturing pollution variation between monitors without relying heavily on other data sources.</p><p >Improved satellite air pollution observations from TROPOMI further support that surface NO<sub>2</sub> can be estimated without heavy reliance on other data.</p>","PeriodicalId":100014,"journal":{"name":"ACS ES&T Air","volume":"2 2","pages":"187–200 187–200"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsestair.4c00153","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T Air","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestair.4c00153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nitrogen dioxide (NO2) pollution is associated with adverse health effects, but its spatial variability between ground monitors is poorly characterized. NO2 column observations from the Tropospheric Monitoring Instrument (TROPOMI) have unprecedented spatial resolution and high accuracy over the globe. Land-use regression (LUR) models predict surface-level NO2 with relevance for epidemiological and environmental justice studies. We use TROPOMI NO2 columns in a land use regression (LUR) model to improve surface NO2 concentration estimates over the United States. The TROPOMI LUR predictions have improved correlation with ground monitors (Adj. R2 = 0.72) and bias (Mean Bias, MB = 14.2%) compared with an existing LUR using less granular NO2 data from a legacy satellite instrument (Adj. R2 = 0.54 and MB = 49%; for North America). Removing TROPOMI NO2 from the LUR decreased R2 by 29.1%, 8.1 times the impact of removing road system information. These findings reveal that novel Earth observing satellites can enhance surface NO2 surveillance by capturing pollution variation between monitors without relying heavily on other data sources.

Improved satellite air pollution observations from TROPOMI further support that surface NO2 can be estimated without heavy reliance on other data.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Issue Editorial Masthead Issue Publication Information Wildland Fire Smoke Adds to Disproportionate PM2.5 Exposure in the United States Forest Mercury Deposition Observation in Chongqing: Evaluating Effectiveness of Mercury Pollution Control over the Past Decade in Southwestern China Kinetic Modeling of Secondary Organic Aerosol in a Weather-Chemistry Model: Parameterizations, Processes, and Predictions for GOAmazon
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1